1
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Casati L, Ciceri S, Maggi R, Bottai D. Physiological and Pharmacological overview of the Gonadotropin Releasing Hormone. Biochem Pharmacol 2023; 212:115553. [PMID: 37075816 DOI: 10.1016/j.bcp.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Gonadotropin-releasing Hormone (GnRH) is a decapeptide responsible for the control of the reproductive functions. It shows C- and N-terminal aminoacid modifications and two other distinct isoforms have been so far identified. The biological effects of GnRH are mediated by binding to high-affinity G-protein couple receptors (GnRHR), showing characteristic very short C tail. In mammals, including humans, GnRH-producing neurons originate in the embryonic nasal compartment and during early embryogenesis they undergo rapid migration towards the hypothalamus; the increasing knowledge of such mechanisms improved diagnostic and therapeutic approaches to infertility. The pharmacological use of GnRH, or its synthetic peptide and non-peptide agonists or antagonists, provides a valid tool for reproductive disorders and assisted reproduction technology (ART). The presence of GnRHR in several organs and tissues indicates additional functions of the peptide. The identification of a GnRH/GnRHR system in the human endometrium, ovary, and prostate has extended the functions of the peptide to the physiology and tumor transformation of such tissues. Likely, the activity of a GnRH/GnRHR system at the level of the hippocampus, as well as its decreased expression in mice brain aging, raised interest in its possible involvement in neurogenesis and neuronal functions. In conclusion, GnRH/GnRHR appears to be a fascinating biological system that exerts several possibly integrated pleiotropic actions in the complex control of reproductive functions, tumor growth, neurogenesis, and neuroprotection. This review aims to provide an overview of the physiology of GnRH and the pharmacological applications of its synthetic analogs in the management of reproductive and non-reproductive diseases.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Samuele Ciceri
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| | - Roberto Maggi
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy.
| | - Daniele Bottai
- Dept. of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Milano Italy
| |
Collapse
|
3
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
4
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
5
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
6
|
Yan W, Cheng L, Wang W, Wu C, Yang X, Du X, Ma L, Qi S, Wei Y, Lu Z, Yang S, Shao Z. Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode. Nat Commun 2020; 11:5287. [PMID: 33082324 PMCID: PMC7576152 DOI: 10.1038/s41467-020-19109-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Gonadotrophin-releasing hormone (GnRH), also known as luteinizing hormone-releasing hormone, is the main regulator of the reproductive system, acting on gonadotropic cells by binding to the GnRH1 receptor (GnRH1R). The GnRH-GnRH1R system is a promising therapeutic target for maintaining reproductive function; to date, a number of ligands targeting GnRH1R for disease treatment are available on the market. Here, we report the crystal structure of GnRH1R bound to the small-molecule drug elagolix at 2.8 Å resolution. The structure reveals an interesting N-terminus that could co-occupy the enlarged orthosteric binding site together with elagolix. The unusual ligand binding mode was further investigated by structural analyses, functional assays and molecular docking studies. On the other hand, because of the unique characteristic of lacking a cytoplasmic C-terminal helix, GnRH1R exhibits different microswitch structural features from other class A GPCRs. In summary, this study provides insight into the ligand binding mode of GnRH1R and offers an atomic framework for rational drug design.
Collapse
Affiliation(s)
- Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaozhe Du
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuquan Wei
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiliang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Piorecka K, Smith D, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem 2020; 96:103617. [PMID: 32014639 DOI: 10.1016/j.bioorg.2020.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Anthracyclines (Anth) are widely used in the treatment of various types of cancer. Unfortunately, they exhibit serious adverse effects, such as hematopoietic depression and cardiotoxicity, leading to heart failure. In this review, we focus on recently developed conjugates of anthracyclines with a range of nanocarriers, such as polymers, peptides, DNA or inorganic systems. Manipulation of the composition, size and shape of chemical entities at the nanometer scale makes possible the design and development of a range of prodrugs. In this review we concentrate on synthetic chemistry in the long process leading to the introduction of novel therapeutic products.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - David Smith
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
8
|
Tzoupis H, Nteli A, Platts J, Mantzourani E, Tselios T. Refinement of the gonadotropin releasing hormone receptor I homology model by applying molecular dynamics. J Mol Graph Model 2019; 89:147-155. [DOI: 10.1016/j.jmgm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
9
|
Lajkó E, Spring S, Hegedüs R, Biri-Kovács B, Ingebrandt S, Mező G, Kőhidai L. Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein J Org Chem 2018; 14:2495-2509. [PMID: 30344773 PMCID: PMC6178282 DOI: 10.3762/bjoc.14.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a “second drug” proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Sarah Spring
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.,Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Rózsa Hegedüs
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Sven Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Gábor Mező
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - László Kőhidai
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| |
Collapse
|
10
|
Abstract
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure.
Collapse
|
11
|
Murányi J, Gyulavári P, Varga A, Bökönyi G, Tanai H, Vántus T, Pap D, Ludányi K, Mező G, Kéri G. Synthesis, characterization and systematic comparison of FITC-labelled GnRH-I, -II and -III analogues on various tumour cells. J Pept Sci 2017; 22:552-60. [PMID: 27443981 DOI: 10.1002/psc.2904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/05/2022]
Abstract
Targeted tumour therapy is the focus of recent cancer research. Gonadotropin-releasing hormone (GnRH) analogues are able to deliver anticancer agents selectively into tumour cells, which highly express GnRH receptors. However, the effectiveness of different analogues as targeting moiety in drug delivery systems is rarely compared, and the investigated types of cancer are also limited. Therefore, we prepared selectively labelled, fluorescent derivatives of GnRH-I, -II and -III analogues, which were successfully used for drug targeting. In this manuscript, we investigated these analogues' solubility, stability and passive membrane permeability and compared their cellular uptake by various cancer cells. We found that these labelled GnRH conjugates provide great detectability, without undesired cytotoxicity and passive membrane permeability. The introduced experiments with these conjugates proved their reliable tracking, quantification and comparison. Cellular uptake efficiency was studied on human breast, colon, pancreas and prostate cancer cells (MCF-7, HT-29, BxPC-3, LNCaP) and on dog kidney cells (Madin-Darby canine kidney). Each of the three conjugates was taken up by GnRH-I receptor-expressing cells, but the different cells preferred different analogues. Furthermore, we demonstrated for the first time the high cell surface expression of GnRH-I receptors and the effective cellular uptake of GnRH analogues on human pharynx tumour (Detroit-562) cells. In summary, our presented results detail that the introduced conjugates could be innovative tools for the examination of the GnRH-based drug delivery systems on various cells and offer novel information about these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- József Murányi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Pál Gyulavári
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Attila Varga
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Györgyi Bökönyi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Henriette Tanai
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Tibor Vántus
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, Bókay János St. 53-54, H1083, Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre St. 7, H1092, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Pázmány Péter sétány 1/A, H1518, Budapest, Hungary
| | - György Kéri
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| |
Collapse
|
12
|
Hegedüs R, Pauschert A, Orbán E, Szabó I, Andreu D, Marquardt A, Mező G, Manea M. Modification of daunorubicin-GnRH-III bioconjugates with oligoethylene glycol derivatives to improve solubility and bioavailability for targeted cancer chemotherapy. Biopolymers 2016; 104:167-77. [PMID: 25753049 DOI: 10.1002/bip.22629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Daunorubicin-GnRH-III bioconjugates have recently been developed as drug delivery systems with potential applications in targeted cancer chemotherapy. In order to improve their biochemical properties, several strategies have been pursued: (1) incorporation of an enzymatic cleavable spacer between the anticancer drug and the peptide-based targeting moiety, (2) peptide modification by short chain fatty acids, or (3) attachment of two anticancer drugs to the same GnRH-III derivative. Although these modifications led to more potent bioconjugates, a decrease in their solubility was observed. Here we report on the design, synthesis and biochemical characterization of daunorubicin-GnRH-III bioconjugates with increased solubility, which could be achieved by incorporating oligoethylene glycol-based spacers in their structure. First, we have evaluated the effect of an oligoethylene glycol-based spacer on the solubility, enzymatic stability/degradation, cellular uptake, and in vitro cytostatic effect of a bioconjugate containing only one daunorubicin attached through a GFLG tetrapeptide spacer to the GnRH-III targeting moiety. Thereafter, more complex compounds containing two copies of daunorubicin, GFLG spacers as well as Lys(nBu) in position 4 of GnRH-III were synthesized and biochemically characterized. Our results indicated that all synthesized oligoethylene glycol-containing bioconjugates had higher solubility in cell culture medium than the unmodified analogs. They were degraded in the presence of rat liver lysosomal homogenate leading to the formation of small drug containing metabolites. In the case of bioconjugates containing two copies of daunorubicin, the incorporation of oligoethylene glycol-based spacers led to increased in vitro cytostatic effect on MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Rózsa Hegedüs
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Aline Pauschert
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Erika Orbán
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Andreas Marquardt
- Proteomics Facility, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Marilena Manea
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
13
|
Maggi R, Cariboni AM, Marelli MM, Moretti RM, Andrè V, Marzagalli M, Limonta P. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum Reprod Update 2015; 22:358-81. [PMID: 26715597 DOI: 10.1093/humupd/dmv059] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. METHODS An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. RESULTS This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. CONCLUSIONS Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases.
Collapse
Affiliation(s)
- Roberto Maggi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Anna Maria Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Valentina Andrè
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133 Milano, Italy
| |
Collapse
|