1
|
Sirinian C, Papanastasiou AD, Degn SE, Frantzi T, Aronis C, Chaniotis D, Makatsoris T, Koutras A, Kalofonos HP. RANK-C Expression Sensitizes ER-Negative, EGFR-Positive Breast Cancer Cells to EGFR-Tyrosine Kinase Inhibitors (TKIs). Genes (Basel) 2021; 12:genes12111686. [PMID: 34828291 PMCID: PMC8619104 DOI: 10.3390/genes12111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: We have previously shown that overexpression of RANK-c in ER-negative breast cancer cell lines attenuates aggressive properties of cancer cells, partially through a RANK-c/EGFR interaction. EGFR inhibition through TKIs in breast cancer has been tested in triple-negative disease settings with limited clinical benefit for patients. Here we test if expression of RANK-c in ER-negative breast cancer cells in conjunction with treatment with TK inhibitors (erlotinib or gefitinib) can affect survival and colony-forming capacity of cancer cells. Methods: Stably expressing MDA-MB-231-RANK-c and SKBR3-RANK-c cells were employed to test proliferation and colony formation in the presence of TKIs. In addition, Western blot analysis was performed to dissect EGFR related signaling cascades upon TK inhibition in the presence of RANK-c. Results: Interestingly the two RANK-c expressing, ER-negative cells lines presented with a distinct phenotype concerning TKI sensitivity upon treatment. MDA-MB-231-RANK-c cells had a higher sensitivity upon gefitinib treatment, while erlotinib decreased the proliferation rate of SKBR3-RANK-c cells. Further, colony formation assays for MDA-MB-231-RANK-c cells showed a decrease in the number and size of colonies developed in the presence of erlotinib. In addition, RANK-c seems to alter signaling through EGFR after TKI treatment in a cell type-specific manner. Conclusions: Our results indicate that ER-negative breast cancer cells that express RANK-c alter their sensitivity profile against tyrosine kinase inhibitors (erlotinib and gefitinib) in a cell type-specific and culture substrate-dependent manner.
Collapse
Affiliation(s)
- Chaido Sirinian
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
- Correspondence: or ; Tel.: +30-26-1096-9133
| | | | - Soren E. Degn
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Theodora Frantzi
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
| | - Christos Aronis
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (A.D.P.); (D.C.)
| | - Thomas Makatsoris
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
| | - Angelos Koutras
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
| | - Haralabos P. Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, 26504 Patras, Greece; (T.F.); (C.A.); (T.M.); (A.K.); (H.P.K.)
| |
Collapse
|
2
|
Matsumoto T, Yoki A, Konno R, Oguri Y, Hashimura M, Tochimoto M, Nakagawa M, Jiang Z, Ishibashi Y, Ito T, Kodera Y, Saegusa M. Cytoplasmic EBP50 and elevated PARP1 are unfavorable prognostic factors in ovarian clear cell carcinoma. Carcinogenesis 2021; 42:1162-1170. [PMID: 34323956 DOI: 10.1093/carcin/bgab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Patients with ovarian clear cell carcinoma (OCCC) experience frequent recurrence, which is most likely due to chemoresistance. We used shotgun proteomics analysis and identified upregulation of ezrin-binding phosphoprotein 50 (EBP50) in recurrent OCCC samples. Cytoplasmic and/or nuclear (Cyt/N), but not membranous, EBP50 immunoreactivity was significantly higher in recurrent OCCC as compared to that of primary tumors. OCCC cells expressing cytoplasmic EBP50 were significantly less susceptible to cisplatin (CDDP)-induced apoptosis compared to cells expressing membranous EBP50. Abrogation of resistance following knockdown of cytoplasmic EBP50 was accompanied by decreased XIAP and BCL2, increased BAX and increased caspase-3 cleavage. We found that poly (ADP-ribose) polymerase1 (PARP1), which is involved in DNA damage detection and repair, binds to EBP50 through its PDZ1 domain. CDDP treatment of cells expressing cytoplasmic (but not membranous) EBP50 increased nuclear PARP1 expression, whereas knockdown of EBP50 cells decreased PARP1 expression and activity following CDDP treatment. Finally, OCCC patients with a combination of Cyt/N EBP50 and high PARP1 score had worst the prognosis for overall and progression-free survival. Together, our data suggest that cytoplasmic EBP50 inhibits apoptosis and promotes OCCC survival through stabilization of PARP1 activity and modulation of the XIAP/BCL2/BAX axis. This may increase the likelihood of tumor recurrence, and we therefore suggest a combined analysis for EBP50 and PARP1 may have great utility in OCCC prediction and prognosis.
Collapse
Affiliation(s)
- Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ako Yoki
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Ryo Konno
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Zesong Jiang
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yu Ishibashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takashi Ito
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
3
|
Li X, Wang H, Yang X, Wang X, Zhao L, Zou L, Yang Q, Hou Z, Tan J, Zhang H, Nie J, Jiao B. GABRP sustains the stemness of triple-negative breast cancer cells through EGFR signaling. Cancer Lett 2021; 514:90-102. [PMID: 34023418 DOI: 10.1016/j.canlet.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Effective treatment regimens for triple-negative breast cancer (TNBC) are relatively scarce due to a lack of specific therapeutic targets. Epidermal growth factor receptor (EGFR) signaling is highly active in TNBC and is associated with poor prognosis. Most EGFR antagonists, which significantly improve outcome in lung and colon cancer, have shown limited clinical effects in breast cancer. However, limiting EGFR expression in TNBC is a potential strategy for improving the clinical efficacy of EGFR antagonists. Here, we found that the gamma-aminobutyric acid type A receptor π subunit (GABRP), as a membrane protein enriched in TNBC stem cells, interacted with EGFR and significantly sustained its expression, resulting in stemness maintenance and chemotherapy resistance. Silencing GABRP induced down-regulation of EGFR signaling, which hindered cell stemness and enhanced sensitivity to chemotherapies, including paclitaxel, doxorubicin, and cisplatin. We also identified that retigabine, an FDA-approved drug for adjunctive treatment of seizures, increased the sensitivity of EGFR to gefitinib in gefitinib-resistant cells. Our findings show that GABRP can sustain the stemness of TNBC via modulating EGFR expression, suggesting that GABRP may be a potential therapeutic target that can address EGFR inhibitor resistance in TNBC.
Collapse
Affiliation(s)
- Xiyin Li
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Hairui Wang
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Xiaoqi Wang
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Lina Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
| | - Honglei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Center for scientific research, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Jianyun Nie
- Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China; Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
4
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
5
|
Integrin-Linked Kinase Links Integrin Activation to Invadopodia Function and Invasion via the p(T567)-Ezrin/NHERF1/NHE1 Pathway. Int J Mol Sci 2021; 22:ijms22042162. [PMID: 33671549 PMCID: PMC7926356 DOI: 10.3390/ijms22042162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor cell invasion depends largely on degradation of the extracellular matrix (ECM) by protease-rich structures called invadopodia, whose formation and activity requires the convergence of signaling pathways engaged in cell adhesion, actin assembly, membrane regulation and ECM proteolysis. It is known that β1-integrin stimulates invadopodia function through an invadopodial p(T567)-ezrin/NHERF1/NHE1 signal complex that regulates NHE1-driven invadopodia proteolytic activity and invasion. However, the link between β1-integrin and this signaling complex is unknown. In this study, in metastatic breast (MDA-MB-231) and prostate (PC-3) cancer cells, we report that integrin-linked kinase (ILK) integrates β1-integrin with this signaling complex to regulate invadopodia activity and invasion. Proximity ligation assay experiments demonstrate that, in invadopodia, ILK associates with β1-integrin, NHE1 and the scaffold proteins p(T567)-ezrin and NHERF1. Activation of β1-integrin increased both invasion and invadopodia activity, which were specifically blocked by inhibition of either NHE1 or ILK. We conclude that ILK integrates β1-integrin with the ECM proteolytic/invasion signal module to induce NHE1-driven invadopodial ECM proteolysis and cell invasion.
Collapse
|
6
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
7
|
Yang F, Hu M, Chang S, Huang J, Si Y, Wang J, Cheng S, Jiang WG. Alteration in the sensitivity to crizotinib by Na +/H + exchanger regulatory factor 1 is dependent to its subcellular localization in ALK-positive lung cancers. BMC Cancer 2020; 20:202. [PMID: 32164629 PMCID: PMC7068933 DOI: 10.1186/s12885-020-6687-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Na+/H+ exchanger regulatory factor 1 (NHERF1) is an important scaffold protein participates in the modulation of a variety of intracellular signal pathways. NHERF1 was able to enhance the effects of chemo-drugs in breast and cervical cancer cells. Anaplastic lymphoma kinase (ALK) fusion mutations are validated molecules targeted therapy in lung cancers, where crizotinib can be used as the specific inhibitor to suppress tumor progression. However, due to the less frequent occurrence of ALK mutations and the complexity for factors to determine drug responses, the genes that could alter crizotinib sensitivity are unclear. Methods Both ALK-translocated and ALK-negative lung adenocarcinoma specimens in tissue sections were collected for immunohistochemistry. The possible mechanisms of NHERF1 and its role in the cell sensitivity to crizotinib were investigated using an ALK-positive and crizotinib-sensitive lung adenocarcinoma cell line H3122. Either a NHERF1 overexpression vector or agents for NHERF1 knockdown was used for crizotinib sensitivity measures, in association with cell viability and apoptosis assays. Results The expression level of NHERF1 in ALK-translocated NSCLC was significantly higher than that in other lung cancer tissues. NHERF1 expression in ALK positive lung cancer cells was regulated by ALK activities, and was in return able to alter the sensitivity to crizotinib. The function of NHERF1 to influence crizotinib sensitivity was depending on its subcellular distribution in cytosol instead of its nucleus localized form. Conclusion Ectopically overexpressed NHERF1 could be a functional protein for consideration to suppress lung cancers. The determination of NHERF1 levels in ALK positive NSCLC tissues might be useful to predict crizotinib resistance, especially by distinguishing cytosolic or nuclear localized NHERF1 for the overexpressed molecules.
Collapse
Affiliation(s)
- Fenglian Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China
| | - Mu Hu
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China.,Department of Thoracic Surgery, Beijing Xuanwu Hospital, Beijing, 100053, P.R. China
| | - Siyuan Chang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China
| | - Jing Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China
| | - Yang Si
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing, 101149, P.R. China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China.
| | - Wen G Jiang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, China.,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
8
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
9
|
Phosphorylation of NHERF1 S279 and S301 differentially regulates breast cancer cell phenotype and metastatic organotropism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:26-37. [PMID: 30326259 DOI: 10.1016/j.bbadis.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
Collapse
|
10
|
Jabbarzadeh Kaboli P, Leong MPY, Ismail P, Ling KH. Antitumor effects of berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 breast cancer cells using molecular modelling and in vitro study. Pharmacol Rep 2018; 71:13-23. [PMID: 30343043 DOI: 10.1016/j.pharep.2018.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/14/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is an alkaloid plant-based DNA intercalator that affects gene regulation, particularly expression of oncogenic and tumor suppressor proteins. The effects of berberine on different signaling proteins remains to be elucidated. The present study aimed to identify the effects of berberine against key oncogenic proteins in breast cancer cells. METHODS Molecular docking and molecular dynamics simulations were used for EGFR, p38, ERK1/2, and AKT. The effects of berberine and lapatinib on MAPK and PI3K pathways in MDA-MB231 and MCF-7 cells were evaluated using immunoflorescence assays, and the amounts of phosphorylated kinases were compared to total kinases after treating with different concentrations of berberine. RESULTS Simulations showed berberine accurately interacted with EGFR, AKT, P38, and ERK1/2 active sites in silico (scores = -7.57 to -7.92 Kcal/mol) and decreased the levels of active forms of corresponding enzymes in both cell lines; however, berberine binding to p38 showed less stability. Cytotoxicity analysis indicated that MDA-MB231 cells were resistant to berberine compared to MCF-7 cells [72 h IC50 = 50 versus 15 μM, respectively). Also, lapatinib strongly activated AKT but suppressed EGFR in MDA-MB231 cells. The activity of EGFR, AKT, P38, and ERK1/2 were affected by berberine; however, berberine dramatically reduced EGFR and AKT phosphorylation. CONCLUSION By way of its multikinase inhibitory effects, berberine might be a useful replacement for lapatinib, an EGFR inhibitor which can cause acquired drug resistance in patients.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Melody Pui-Yee Leong
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
11
|
Zhang X, Liu J, Li Z. Na +/H + exchanger regulatory factor 1 overexpression suppresses the malignant phenotype of MIAPaCa-2 pancreatic adenocarcinoma cells by downregulating Akt phosphorylation. Oncol Lett 2018; 15:7725-7729. [PMID: 29725468 PMCID: PMC5920473 DOI: 10.3892/ol.2018.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/26/2017] [Indexed: 01/18/2023] Open
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is reported to be associated with the development of numerous types of tumor; however, its effects on the metastasis of pancreatic adenocarcinoma are not fully understood. In the present study, it was revealed that the expression level of NHERF1 in pancreatic adenocarcinoma is decreased compared with normal pancreatic tissue based on the analysis of a protein expression database. The present study was undertaken in order to investigate the potential effects of NHERF1 overexpression on the malignant phenotype of MIAPaCa-2 pancreatic adenocarcinoma cells. NHERF1 was stably overexpressed in this cell line, and Cell Counting Kit-8, wound healing and Transwell assays were used to detect the proliferative and migratory abilities of the cells. NHERF1 overexpression suppressed proliferation in the MIAPaCa-2 cell line compared with empty vector-transfected (negative control) cells. Additionally, NHERF1 overexpression significantly inhibited the migration of MIAPaCa-2 cells. The results of a western blot analysis identified that NHERF1 overexpression markedly decreased the expression of phosphorylated-protein kinase B (p-Akt), while no significant difference was observed between untransfected and negative control cells. Taken together, these results suggested that NHERF1 may be able to inhibit the proliferation and migration and alter the malignant phenotype of pancreatic adenocarcinoma cells via reduction of p-Akt levels. These findings indicate a potential novel approach to the treatment of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Xibo Zhang
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Junjian Liu
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhonglian Li
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
12
|
Centonze M, Saponaro C, Mangia A. NHERF1 Between Promises and Hopes: Overview on Cancer and Prospective Openings. Transl Oncol 2018; 11:374-390. [PMID: 29455084 PMCID: PMC5852411 DOI: 10.1016/j.tranon.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein, with two tandem PDZ domains and a carboxyl-terminal ezrin-binding (EB) region. This particular sticky structure is responsible for its interaction with different molecules to form multi-complexes that have a pivotal role in a lot of diseases. In particular, its involvement during carcinogenesis and cancer progression has been deeply analyzed in different tumors. The role of NHERF1 is not unique in cancer; its activity is connected to its subcellular localization. The literature data suggest that NHERF1 could be a new prognostic/predictive biomarker from breast cancer to hematological cancers. Furthermore, the high potential of this molecule as therapeutical target in different carcinomas is a new challenge for precision medicine. These evidences are part of a future view to improving patient clinical management, which should allow different tumor phenotypes to be treated with tailored therapies. This article reviews the biology of NHERF1, its engagement in different signal pathways and its involvement in different cancers, with a specific focus on breast cancer. It also considers NHERF1 potential role during inflammation related to most human cancers, designating new perspectives in the study of this "Janus-like" protein.
Collapse
Affiliation(s)
- Matteo Centonze
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
13
|
Mao X, Chen Z, Zhao Y, Yu Y, Guan S, Woodfield SE, Vasudevan SA, Tao L, Pang JC, Lu J, Zhang H, Zhang F, Yang J. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma. Oncotarget 2018; 8:1555-1568. [PMID: 27902463 PMCID: PMC5352076 DOI: 10.18632/oncotarget.13657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.
Collapse
Affiliation(s)
- Xinfang Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Tao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Librizzi M, Caradonna F, Cruciata I, Dębski J, Sansook S, Dadlez M, Spencer J, Luparello C. Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA. Chem Res Toxicol 2017; 30:2187-2196. [PMID: 29129070 DOI: 10.1021/acs.chemrestox.7b00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Jay Amin hydroxamic acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA's cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 μM. JAHA's lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction, and autophagy mechanisms. To glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of differential display-PCR, proteome analysis, and COMET assay techniques and shown some differences in the molecular signature profiles induced by exposure to either HDACis. In particular, in contrast to the more numerous and diversified changes induced by SAHA, JAHA has shown a more selective impact on expression of molecular signatures involved in antioxidant activity and DNA repair. Besides expanding the biological knowledge of the effect exerted by the modifications in compound structures on cell phenotype, the molecular elements put in evidence in our study may provide promising targets for therapeutic interventions on TNBCs.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Ilenia Cruciata
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawinskiego 5a, 02-106 Warsaw, Poland
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex , Falmer, Brighton BN1 9QJ, United Kingdom
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Garrido P, Shalaby A, Walsh EM, Keane N, Webber M, Keane MM, Sullivan FJ, Kerin MJ, Callagy G, Ryan AE, Glynn SA. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget 2017; 8:80568-80588. [PMID: 29113326 PMCID: PMC5655221 DOI: 10.18632/oncotarget.19631] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
Inflammation is implicated in triple negative breast cancer (TNBC) progression. TNBC carries a worse prognosis than other breast cancer subtypes, and with the clinical and molecular heterogeneity of TNBC, there is a lack of effective therapeutic targets available. Identification of molecular targets for TNBC subtypes is crucial towards personalized patient stratification. Inducible nitric oxide synthase (iNOS) has been shown to induce p53 mutation accumulation, basal-like gene signature enrichment and transactivation of the epidermal growth factor receptor (EGFR) via s-nitrosylation. Herein we report that iNOS is associated with disease recurrence, distant metastasis and decreased breast cancer specific survival in 209 cases of TNBC. Employing TNBC cell lines representing normal basal breast, and basal-like 1 and basal-like 2 tumors, we demonstrate that nitric oxide (NO) induces EGFR-dependent ERK phosphorylation in basal-like TNBC cell lines. Moreover NO mediated cell migration and cell invasion was found to be dependent on EGFR and ERK activation particularly in basal-like 2 TBNC cells. This occurred in conjunction with NF-κB activation and increased secretion of pro-inflammatory cytokines IL-8, IL-1β and TNF-α. This provides substantial evidence for EGFR as a therapeutic target to be taken into consideration in the treatment of a specific subset of basal-like TNBC overexpressing iNOS.
Collapse
Affiliation(s)
- Pablo Garrido
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Apoptosis Research Centre, National University of Ireland Galway, Galway, Republic of Ireland
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Elaine M Walsh
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Nessa Keane
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Mark Webber
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Maccon M Keane
- Medical Oncology, Galway University Hospital, Galway, Republic of Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Grace Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland Galway, Galway, Republic of Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland.,Prostate Cancer Institute, National University of Ireland Galway, Galway, Republic of Ireland.,Apoptosis Research Centre, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
16
|
Oh YS, Heo K, Kim EK, Jang JH, Bae SS, Park JB, Kim YH, Song M, Kim SR, Ryu SH, Kim IH, Suh PG. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med 2017; 49:e351. [PMID: 28684865 PMCID: PMC5565956 DOI: 10.1038/emm.2017.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
NHERF1/EBP50 (Na+/H+ exchanger regulating
factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable
protein complexes beneath the apical membrane of polar epithelial cells. By
contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in
the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer
progression remain unclear. In this study, we found that, upon lysophosphatidic
acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma
membrane, and subsequently to cortical protrusion structures, of ovarian cancer
cells. This movement depended on direct binding of NHERF1 to C-terminally
phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated
cpERMs and further impaired cpERM-dependent remodeling of the cell cortex,
suggesting reciprocal regulation between these proteins. The LPA-induced protein
complex was highly enriched in migratory pseudopodia, whose formation was
impaired by overexpression of NHERF1 truncation mutants. Consistent with this,
NHERF1 depletion in various types of cancer cells abolished chemotactic cell
migration toward a LPA gradient. Taken together, our findings suggest that the
high dynamics of cytosolic NHERF1 provide cancer cells with a means of
controlling chemotactic migration. This capacity is likely to be essential for
ovarian cancer progression in tumor microenvironments containing LPA.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hoo Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
17
|
Liu Z, He K, Ma Q, Yu Q, Liu C, Ndege I, Wang X, Yu Z. Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One 2017; 12:e0177694. [PMID: 28531218 PMCID: PMC5439698 DOI: 10.1371/journal.pone.0177694] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is over-expressed in about 50% of Triple negative breast cancers (TNBCs), but EGFR inhibitors have not been effective in treating TNBC patients. Increasing evidence supports that autophagy was related to drug resistance at present. However, the role and the mechanism of autophagy to the treatment of TNBC remain unknown. In the current study, we investigated the effect of autophagy inhibitor to gefitinib (Ge) in TNBC cells in vitro and in nude mice vivo. Our study demonstrated that inhibition of autophagy by 3-Methyladenine or bafilomycin A1 improved Ge's sensitivity to MDA-MB-231 and MDA-MB-468 cells, as evidence from stronger inhibition of cell vitality and colony formation, higher level of G0/G1 arrest and DNA damage, and these effects were verified in nude mice vivo. Our data showed that the mitochondrial-dependent apoptosis pathway was activated in favor of promoting apoptosis in the therapy of Ge combined autophagy inhibitor, as the elevation of BAX/Bcl-2, Cytochrome C, and CASP3. These results demonstrated that targeting autophagy should be considered as an effective therapeutic strategy to enhance the sensitivity of EGFR inhibitors on TNBC.
Collapse
Affiliation(s)
- Zhaoyun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kewen He
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qinghua Ma
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Yu
- University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Chenyu Liu
- Department of Biology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Isabella Ndege
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinzhao Wang
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Tao T, Yang X, Qin Q, Shi W, Wang Q, Yang Y, He J. NHERF1 Enhances Cisplatin Sensitivity in Human Cervical Cancer Cells. Int J Mol Sci 2017; 18:ijms18010005. [PMID: 28085111 PMCID: PMC5297640 DOI: 10.3390/ijms18010005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Cervical cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely utilized in locally advanced cervical cancer patients. However, resistance has been the major limitation. In this study, we found that Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) was downregulated in cisplatin-resistant cells. Analysis based on a cervical cancer dataset from The Cancer Genome Atlas (TCGA) showed association of NHERF1 expression with disease-free survival of patients received cisplatin treatment. NHERF1 overexpression inhibited proliferation and enhanced apoptosis in cisplatin-resistant HeLa cells, whereas NHERF1 knockdown had inverse effects. While parental HeLa cells were more resistant to cisplatin after NHERF1 knockdown, NHERF1 overexpression in CaSki cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that NHERF1 significantly inhibited AKT and extracellular signal–regulated kinase (ERK) signaling pathways in cisplatin-resistant cells. Taken together, our results provide the first evidence that NHERF1 can sensitize cisplatin-refractory cervical cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumors.
Collapse
Affiliation(s)
- Tao Tao
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
| | - Xiaomei Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
- Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing 100069, China.
| | - Qiong Qin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
- Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing 100069, China.
| | - Wen Shi
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
- Experiment Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Qiqi Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing 100069, China.
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China.
- Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing 100069, China.
| |
Collapse
|
19
|
Vaquero J, Nguyen Ho-Bouldoires TH, Clapéron A, Fouassier L. Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: from signaling regulation to clinical relevance. Oncogene 2017; 36:3067-3079. [PMID: 28068322 DOI: 10.1038/onc.2016.462] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
The transmission of cellular information requires fine and subtle regulation of proteins that need to interact in a coordinated and specific way to form efficient signaling networks. The spatial and temporal coordination relies on scaffold proteins. Thanks to protein interaction domains such as PDZ domains, scaffold proteins organize multiprotein complexes enabling the proper transmission of cellular information through intracellular networks. NHERF1/EBP50 is a PDZ-scaffold protein that was initially identified as an organizer and regulator of transporters and channels at the apical side of epithelia through actin-binding ezrin-moesin-radixin proteins. Since, NHERF1/EBP50 has emerged as a major regulator of cancer signaling network by assembling cancer-related proteins. The PDZ-scaffold EBP50 carries either anti-tumor or pro-tumor functions, two antinomic functions dictated by EBP50 expression or subcellular localization. The dual function of NHERF1/EBP50 encompasses the regulation of several major signaling pathways engaged in cancer, including the receptor tyrosine kinases PDGFR and EGFR, PI3K/PTEN/AKT and Wnt-β-catenin pathways.
Collapse
Affiliation(s)
- J Vaquero
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,FONDATION ARC, Villejuif, France
| | - T H Nguyen Ho-Bouldoires
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,FONDATION ARC, Villejuif, France
| | - A Clapéron
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - L Fouassier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
20
|
Ghorab MM, Alsaid MS, Al-Dosari MS, El-Gazzar MG, Parvez MK. Design, Synthesis and Anticancer Evaluation of Novel Quinazoline-Sulfonamide Hybrids. Molecules 2016; 21:molecules21020189. [PMID: 26861266 PMCID: PMC6274562 DOI: 10.3390/molecules21020189] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
By combining the structural features of quinazoline and sulfonamides, novel hybrid compounds 2–21 were synthesized using a simple and convenient method. Evaluation of these compounds against different cell lines identified compounds 7 and 17 as most active anticancer agents as they showed effectiveness on the four tested cell lines. The anticancer screening results of the tested compounds provides an encouraging framework that could lead to the development of potent new anticancer agents.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo 11371, Egypt.
| | - Mansour S Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo 11371, Egypt.
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
21
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
22
|
Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol (Amst) 2015; 2015:975495. [PMID: 26258011 PMCID: PMC4518167 DOI: 10.1155/2015/975495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/05/2015] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.
Collapse
|
23
|
Du G, Yang X, Hu M, Hao C, Gu Y, Zhi X, Jiang WG, He J, Cheng S. Designing a novel high-throughput AlphaLISA assay to quantify plasma NHERF1 as a non-small cell lung cancer biomarker. RSC Adv 2015. [DOI: 10.1039/c5ra16502d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel amplified luminescent proximity homogeneous immunoassay (AlphaLISA) has been developed and validated for the quantification of NHERF1 in human plasma.
Collapse
Affiliation(s)
- Guifang Du
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Xiaomei Yang
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Mu Hu
- Beijing Key Laboratory of Cancer & Metastasis Research
- Capital Medical University
- Beijing 100069
- China
- Department of Thoracic Surgery
| | - Chengcheng Hao
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Yanan Gu
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Xiuyi Zhi
- Beijing Key Laboratory of Cancer & Metastasis Research
- Capital Medical University
- Beijing 100069
- China
- Department of Thoracic Surgery
| | - Wen G. Jiang
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Junqi He
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| | - Shan Cheng
- Department of Biochemistry and Molecular Biology
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Cancer & Metastasis Research
| |
Collapse
|