1
|
Wang Y, Wei Y, Wu Y, Zong Y, Song Y, Pu S, Wu W, Zhou Y, Xie J, Yin H. Multifunctional Nano-Realgar Hydrogel for Enhanced Glioblastoma Synergistic Chemotherapy and Radiotherapy: A New Paradigm of an Old Drug. Int J Nanomedicine 2023; 18:743-763. [PMID: 36820060 PMCID: PMC9938708 DOI: 10.2147/ijn.s394377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose Realgar, as a kind of traditional mineral Chinese medicine, can inhibit multiple solid tumor growth and serve as an adjuvant drug in cancer therapy. However, the extremely low solubility and poor body absorptive capacity limit its application in clinical medicine. To overcome this therapeutic hurdle, realgar can here be fabricated into a nano-realgar hydrogel with enhanced chemotherapy and radiotherapy (RT) ability. Our objective is to evaluate the superior biocompatibility and anti-tumor activity of nano-realgar hydrogel. Methods We have successfully synthesized nano-realgar quantum dots (QDs) coupling with 6-AN molecules (NRA QDs) and further encapsulated with a pH-sensitive dextran hydrogel carrier with hyaluronic acid coating (DEX-HA gel) to promote bioavailability, eventually forming a multifunctional nano-realgar hydrogel (NRA@DH Gel). To better investigate the tumor therapy efficiency of the NRA@DH Gel, we have established the mice in situ bearing GL261 brain glioblastoma as animal models assigned to receive intratumor injection of NRA@DH Gel. Results The designed NRA@DH Gel as an antitumor drug can not only exert the prominent chemotherapy effect but also as a "sustainable reactive oxygen species (ROS) generator" can inhibit in the pentose phosphate pathway (PPP) metabolism and reduce the production of nicotinamide adenine dinucleotide phosphate (NADPH), thereby inhibiting the conversion of glutathione disulfide (GSSG) to glutathione (GSH), reducing GSH concentrations in tumor cells, triggering the accumulation of ROS, and finally enhancing the effectiveness of RT. Conclusion Through the synergistic effect of chemotherapy and RT, NRA@DH Gel effectively inhibited the proliferation and migration of tumor cells, suppressed tumor growth, improved motor coordination, and prolonged survival in tumor-bearing mice. Our work aims to improve the NRA@DH Gel-mediated synergistic chemotherapy and RT will endow a "promising future" for the old drug in clinically comprehensive applications.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Yizhen Wei
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Yichun Wu
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Yue Zong
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Yingying Song
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Shengyan Pu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Wenwen Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Yun Zhou
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China
| | - Jun Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China
| | - Haitao Yin
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, 221009, People’s Republic of China,Correspondence: Haitao Yin; Jun Xie, Email ;
| |
Collapse
|
2
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
3
|
Yan J, Hanif S, Zhang D, Ismail M, Wang X, Li Q, Shi B, Muhammad P, Wu H. Arsenic Prodrug-Mediated Tumor Microenvironment Modulation Platform for Synergetic Glioblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36487-36502. [PMID: 35921662 DOI: 10.1021/acsami.2c12076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) has a distinct internal environment characterized by high levels of glutathione (GSH) and low oxygen partial pressure, which significantly restrict most drugs' effectiveness. Arsenic-based drugs are emerging candidates for treating solid tumors; however, relatively high doses in solo systems and inconsistent complementary systems severely damage the normal tissues. We proposed a novel covalently conjugated strategy for arsenic-based therapy via arsenic-boronic acid complex formation. The boronic acid was modified on silver (AgL) to capture AsV under an alkaline condition named arsenate plasmonic complex (APC) with a distinct Raman response. The APC can precisely release the captured AsV in lysosomal acidic pH that specifically targets TME to initiate a multimodal therapeutic effect such as GSH depletion and reactive oxygen species generation. In addition, GSH activation leads to subconverted AsV into AsIII, which further facilitated glutathione peroxidase (GPx) and superoxide dismutase inhibition, whereas the tumor selective etching of the silver core triggered by endogenous H2O2 that can oxidize to generate highly toxic Ag ions produces and supplies O2 to help the alleviated hypoxia. Both in vitro and in vivo data verify the APC-based chemotherapy paving the way for efficient nanomedicine-enabled boronate affinity-based arsenic chemotherapeutics for on demand site-specific cancer combination treatment of GBM tumors.
Collapse
Affiliation(s)
- Jiliang Yan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haigang Wu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14040743. [PMID: 35456577 PMCID: PMC9026299 DOI: 10.3390/pharmaceutics14040743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients.
Collapse
|
6
|
Xia T, Kumar A, Fulham M, Feng D, Wang Y, Kim EY, Jung Y, Kim J. Fused feature signatures to probe tumour radiogenomics relationships. Sci Rep 2022; 12:2173. [PMID: 35140267 PMCID: PMC8828715 DOI: 10.1038/s41598-022-06085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Radiogenomics relationships (RRs) aims to identify statistically significant correlations between medical image features and molecular characteristics from analysing tissue samples. Previous radiogenomics studies mainly relied on a single category of image feature extraction techniques (ETs); these are (i) handcrafted ETs that encompass visual imaging characteristics, curated from knowledge of human experts and, (ii) deep ETs that quantify abstract-level imaging characteristics from large data. Prior studies therefore failed to leverage the complementary information that are accessible from fusing the ETs. In this study, we propose a fused feature signature (FFSig): a selection of image features from handcrafted and deep ETs (e.g., transfer learning and fine-tuning of deep learning models). We evaluated the FFSig's ability to better represent RRs compared to individual ET approaches with two public datasets: the first dataset was used to build the FFSig using 89 patients with non-small cell lung cancer (NSCLC) comprising of gene expression data and CT images of the thorax and the upper abdomen for each patient; the second NSCLC dataset comprising of 117 patients with CT images and RNA-Seq data and was used as the validation set. Our results show that our FFSig encoded complementary imaging characteristics of tumours and identified more RRs with a broader range of genes that are related to important biological functions such as tumourigenesis. We suggest that the FFSig has the potential to identify important RRs that may assist cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ashnil Kumar
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Eun Young Kim
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Younhyun Jung
- School of Computing, Gachon University, Seongnam, Republic of Korea
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
7
|
Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021; 26:80. [PMID: 34388980 PMCID: PMC8364060 DOI: 10.1186/s12199-021-00998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis, anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
8
|
Wahiduzzaman M, Ota A, Hosokawa Y. Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. Curr Cancer Drug Targets 2021; 20:115-129. [PMID: 31736446 DOI: 10.2174/1568009619666191021122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
9
|
Li J, Han R, Li J, Zhai L, Xie X, Zhang J, Chen Y, Luo J, Wang S, Sun Z, Cao Y, Lin L, Yang Q. Analysis of Molecular Mechanism of YiqiChutan Formula Regulating DLL4-Notch Signaling to Inhibit Angiogenesis in Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8875503. [PMID: 33628824 PMCID: PMC7895574 DOI: 10.1155/2021/8875503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/26/2022]
Abstract
In order to explore the specific mechanism of YiqiChutan formula (YQCTF) in inhibiting the angiogenesis of lung cancer and its relationship with delta-like ligand 4- (DLL4-) Notch signaling, 30 healthy BALB/c-nu/nu rats were selected and divided into three groups: A549 group (implanted with lung adenocarcinoma cell line A549), NCI-H460 group (implanted with human lung large-cell carcinoma cell line NCI-H460), and NCI-H446 group (implanted with human lung small cell carcinoma cell line NCI-H446) for constructing lung cancer transplanted tumor models. After modeling, the group treated with normal saline was taken as control group, 200 mg/kg of YQCTF was adopted for intervention, and the tumor volume and growth inhibition rate were compared with the vascular targeted inhibitor Sorafenib. HE staining, CD31 fluorescent antibody staining, and microelectron microscopy were adopted to observe the neovascular endothelial cells of the transplanted tumor. The expression of VEGF, HIF-1α, DLL4, and Notch-1 in the transplanted tumors in each group was detected by Western blot and RT-PCR at the protein level or mRNA level. Compared with the control group, the YQCTF-treated group had obvious inhibitory effect on lung cancer transplanted tumor and lung cancer angiogenesis. In the YQCTF-treated group, the density of angiogenesis decreased significantly and the vascular lumen structure also decreased, and the expression levels of VEGF, HIF-1α, DLL4, and Notch-1 in the YQCTF-treated group were all lower than those in the control group. YQCTF could inhibit the growth of lung cancer transplanted tumor through antiangiogenesis, and it could also reduce the amount of angiogenesis in lung cancer transplanted tumor. In addition, the generation of lumen structure was also hindered, which was realized through the VEGF signaling pathway and DLL4-Notch signaling pathway.
Collapse
Affiliation(s)
- Jiayin Li
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Han
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital to Hunan University of Chinese Medicine, Changsha 410000, China
| | - Linzhu Zhai
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinying Xie
- Department of General, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Zhang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Chen
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiamin Luo
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sisi Wang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhe Sun
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yang Cao
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiuye Yang
- Department of Medical Technologic, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
10
|
Huang W, Chen JJ, Xing R, Zeng YC. Combination therapy: Future directions of immunotherapy in small cell lung cancer. Transl Oncol 2021; 14:100889. [PMID: 33065386 PMCID: PMC7567053 DOI: 10.1016/j.tranon.2020.100889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC), an aggressive and devastating malignancy, is characterized by rapid growth and early metastasis. Although most patients respond to first-line chemotherapy, the majority of patients rapidly relapse and have a relatively poor prognosis. Fortunately, immunotherapy, mainly including antibodies that target the cytotoxic T lymphocyte antigen-4 (CTLA-4), checkpoints programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) to block immune regulatory checkpoints on tumor cells, immune cells, fibroblasts cells and endothelial cells, has achieved the milestone in several solid tumors, such as melanoma and non-small-cell lung carcinomas (NSCLC). In recent years, immunotherapy has made progress in the treatment of patients with SCLC, while its response rate is relatively low to monotherapy. Interestingly, the combination of immunotherapy with other therapy, such as chemotherapy, radiotherapy, and targeted therapy, preliminarily achieve greater therapeutic effects for treating SCLC. Combining different immunotherapy drugs may act synergistically because of the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of chemoradiotherapy in immunotherapy may augment antitumor immune responses because chemoradiotherapy can enhance tumor cell immunogenicity by rapidly inducing tumor lysis and releasing tumor antigens. In addition, since immunotherapy drugs and the molecular targets drugs act on different targets and cells, the combination of these drugs may achieve greater therapeutic effects in the treatment of SCLC. In this review, we focused on the completed and ongoing trials of the combination therapy for immunotherapy of SCLC to find out the rational combination strategies which may improve the outcomes for SCLC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Jia-Jia Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Rui Xing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Yue-Can Zeng
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China; Department of Medical Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Road, Haikou 571199, China.
| |
Collapse
|
11
|
Chang KJ, Yin JZ, Huang H, Li B, Yang MH. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell-maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl Lung Cancer Res 2020; 9:1379-1396. [PMID: 32953511 PMCID: PMC7481635 DOI: 10.21037/tlcr-20-467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Small cell lung cancer (SCLC) is the most deadly and aggressive type of primary lung cancer, with the 5-year survival rate lower than 5%. The FDA has approved arsenic trioxide (As2O3) for acute promyelocytic leukemia (APL) treatment. However, its role in SCLC-derived cancer stem cells (CSCs) remains largely unknown. Methods CSCs were enriched from SCLC cell lines by culturing them as spheres in conditioned serum-free medium. Then, qPCR, western blot, serial passage, limiting dilution, Transwell, and tumorigenesis assay were performed to verify the cells' stem phenotypic characteristics. Anticancer efficiency of As2O3 was assessed in these cells using CCK8, colony formation, sphere formation, flow cytometry, qPCR, western blot analysis in vitro, and tumor growth curve, immunofluorescence, and TUNEL staining analyses in vivo. Results The fifth-passage SCLC spheres showed a potent self-renewal capacity, higher clonal formation efficiency (CFE), SOX2, c-Myc, NANOG, and OCT4 levels, and invasion ability, and stronger tumorigenesis capacity than the parental SCLC cells, indicating that the SCLC sphere cells displayed CSC features. As2O3 inhibited the proliferation, clonality and sphere forming ability of SCLC-derived CSCs and suppressed the tumor growth of CSCs-derived xenograft tumors. As2O3 induced apoptosis and downregulation of SOX2 and c-Myc in vitro and in xenografts. Besides, SOX2 knockdown suppressed SCLC-derived CSCs to self-renew and induced apoptosis. Mechanistically, expression of GLI1 (a key transcription factor of Hedgehog pathway) and its downstream genes increased in SCLC-derived CSCs, compared to the parental cells. As2O3 dramatically downregulated GLI1 and its downstream genes in vitro and in vivo. The GLI inhibitor (GANT-61) recapitulated and enhanced the effects of As2O3 on SCLC-derived CSCs, including growth suppression, apoptosis induction, and GLI1, SOX2 and c-Myc downregulation. Conclusions Altogether, As2O3 effectively suppressed SCLC-derived CSCs growth by downregulating stem cell-maintenance factors and inducing apoptosis. These effects are mediated at least partly via the Hedgehog signaling blockade.
Collapse
Affiliation(s)
- Ke-Jie Chang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Medical Oncology, The Fifth Affiliated Hospital of Sun-Yat-Sen University, Zhuhai, China
| | - Ji-Zhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xin X, Wen T, Gong LB, Deng MM, Hou KZ, Xu L, Shi S, Qu XJ, Liu YP, Che XF, Teng YE. Inhibition of FEN1 Increases Arsenic Trioxide-Induced ROS Accumulation and Cell Death: Novel Therapeutic Potential for Triple Negative Breast Cancer. Front Oncol 2020; 10:425. [PMID: 32318339 PMCID: PMC7147381 DOI: 10.3389/fonc.2020.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, which is very difficult to treat and commonly develops resistance to chemotherapy. The following study investigated whether the inhibition of Flap Endonuclease 1 (FEN1) expression, the key enzyme in the base excision repair (BER) pathway, could improve the anti-tumor effect of arsenic trioxide (ATO), which is a reactive oxygen species (ROS) inducer. Our data showed that ATO could increase the expression of FEN1, and the knockdown of FEN1 could significantly enhance the sensitivity of TNBC cells to ATO both in vitro and in vivo. Further mechanism studies revealed that silencing FEN1 in combination with low doses of ATO might increase intracellular ROS and reduce glutathione (GSH) levels, by reducing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); elevating ROS leaded to apoptosis and p38 and JNK pathway activating. In conclusion, our study suggested the combination of FEN1 knockdown and ATO could induce TNBC cell death by promoting ROS production. FEN1 knockdown can effectively decrease the application concentrations of ATO, thus providing a possibility for the treatment of TNBC with ATO.
Collapse
Affiliation(s)
- Xing Xin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Li-Bao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ming-Ming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
A candidate for lung cancer treatment: arsenic trioxide. Clin Transl Oncol 2019; 21:1115-1126. [PMID: 30756240 DOI: 10.1007/s12094-019-02054-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Arsenic trioxide (ATO), a highly effective drug in treating acute promyelocytic leukemia with low toxicity, demonstrates a significant effect on lung cancer. The anti-cancer mechanisms of ATO include inhibition of cancer stem-like cells, induction of apoptosis, anti-angiogenesis, sensitization of chemotherapy and radiotherapy, anti-cancer effects of hypoxia, and immunoregulation properties. In addition, some studies have reported that different lung cancers respond differently to ATO. It was concluded on numerous studies that the rational combination of administration and encapsulation of ATO have promising potentials in increasing drug efficacy and decreasing adverse drug effects. We reviewed the efficacy of ATO in the treatment of lung cancer in recent years to provide some views for further study.
Collapse
|
14
|
Kumar S, Farah IO, Tchounwou PB. Trisenox induces cytotoxicity through phosphorylation of mitogen-activated protein kinase molecules in acute leukemia cells. J Biochem Mol Toxicol 2018; 32:e22207. [PMID: 30091188 PMCID: PMC6192836 DOI: 10.1002/jbt.22207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/23/2018] [Accepted: 07/06/2018] [Indexed: 01/03/2023]
Abstract
Trisenox (TX) has been used successfully for the treatment of acute promyelocytic leukemia (APL) patients. TX-induced cytotoxicity in APL cells remains poorly understood. In this study, we investigated the molecular mechanism of TX cytotoxicity using APL cell lines. We assessed TX toxicity by quantitatively measuring lactate dehydrogenase levels. Inhibition of cell cycle progression was assessed by confocal microscopy of Ki-67 expression. Apoptosis was evaluated by Western blot analysis of apoptotic proteins expression, immunocytochemistry, and confocal imaging of annexin V and propidium iodide. Mitogen-activated protein kinase (MAPK) signaling cascade was analyzed by Western blot analysis and inhibitor-based experiments with APL cells. We found that TX-induced cytotoxicity inhibited APL cell cycle progression. TX also induced significant (P < 0.05) changes in the expression levels of apoptotic molecules and activated the phosphorylation of MAPK signaling pathways in APL cells. Understanding the mechanism of TX cytotoxicity would be helpful in the design of new APL drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health, College of Science, Engineering and Technology
| | - Ibrahim O. Farah
- Department of Biology, Jackson State University, 1400 J.R Lynch Street, Box18750, Jackson, Mississippi, MS39217, USA
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health, College of Science, Engineering and Technology
| |
Collapse
|
15
|
Martina JA, Puertollano R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J Biol Chem 2018; 293:12525-12534. [PMID: 29945972 DOI: 10.1074/jbc.ra118.003471] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Adaptations and responses to stress conditions are fundamental processes that all cells must accomplish to maintain or restore cellular homeostasis. Cells have a plethora of response pathways to mitigate the effect of different environmental stressors. The transcriptional regulators transcription factor EB (TFEB) and transcription factor binding to IGHM enhancer 3 (TFE3) play a key role in the control of these stress pathways. Therefore, understanding their regulation under different stress conditions is of great interest. Here, using a range of human and murine cells, we show that TFEB and TFE3 are activated upon induction of acute oxidative stress by sodium arsenite via an mTOR complex 1 (mTORC1)-independent process. We found that the mechanism of arsenite-stimulated TFEB and TFE3 activation instead involves protein phosphatase 2A (PP2A)-mediated dephosphorylation at Ser-211 and Ser-321, respectively. Depletion of either the catalytic (PPP2CA+B) or regulatory (PPP2R2A/B55α) subunits of PP2A, as well as PP2A inactivation with the specific inhibitor okadaic acid, abolished TFEB and TFE3 activation in response to sodium arsenite. Conversely, PP2A activation by ceramide or the sphingosine-like compound FTY720 was sufficient to induce TFE3 nuclear translocation. MS analysis revealed that PP2A dephosphorylates TFEB at several residues, including Ser-109, Ser-114, Ser-122, and Ser-211, thus facilitating TFEB activation. Overall, this work identifies a critical mechanism that activates TFEB and TFE3 without turning off mTORC1 activity. We propose that this mechanism may enable some cell types such as immune or cancer cells that require simultaneous TFEB/TFE3 and mTORC1 signaling to survive and achieve robust cell growth in stressful environments.
Collapse
Affiliation(s)
- José A Martina
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Rosa Puertollano
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
More than Just an Immunosuppressant: The Emerging Role of FTY720 as a Novel Inducer of ROS and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4397159. [PMID: 29785244 PMCID: PMC5896217 DOI: 10.1155/2018/4397159] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023]
Abstract
Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells' defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.
Collapse
|
17
|
Leung LL, Lam SK, Li YY, Ho JCM. Tumour growth-suppressive effect of arsenic trioxide in squamous cell lung carcinoma. Oncol Lett 2017; 14:3748-3754. [PMID: 28927142 DOI: 10.3892/ol.2017.6646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) is the second most common subtype of non-small cell lung carcinoma. The anticancer effects of arsenic trioxide (ATO) in lung adenocarcinoma and small-cell lung cancer have previously been reported; however its effects in SCC remain unclear. An MTT assay and western blot analysis were performed to determine cell viability and protein expression, respectively, in the SK-MES-1 and SW900 SCC cell lines following treatment with ATO. Phosphatidylserine externalization, mitochondrial membrane depolarization and cell cycle distribution were studied using flow cytometry and the in vivo effects of ATO on tumour growth were investigated with a xenograft model. The results demonstrated that SK-MES-1 and SW900 SCC cells were sensitive to clinically relevant concentrations of ATO. ATO induced apoptosis, mitochondrial membrane depolarization and G2/M arrest. In addition, treatment with ATO resulted in the downregulation of X-linked inhibitor of apoptosis, B-cell lymphoma-2 (Bcl-2), E2F transcription factor 1 (E2F1), thymidylate synthase and ribonucleotide reductase M1 in addition to the upregulation of Bcl-2 antagonist/killer protein, cleaved poly ADP-ribose polymerase and cleaved caspase 3 in a cell-line specific manner. In the SW900 xenograft model, tumour growth was inhibited by ATO with the formation of apoptotic bodies and downregulation of Bcl-2 and E2F1. In conclusion, ATO suppresses the growth of SCC in vitro and in vivo.
Collapse
Affiliation(s)
- Leanne Lee Leung
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
18
|
Abstract
SIGNIFICANCE There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. CRITICAL ISSUES The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. FUTURE DIRECTIONS If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Collapse
Affiliation(s)
| | - Garth Powis
- 2 Sanford Burnham Prebys Medical Discovery Institute Cancer Center , La Jolla, California
| |
Collapse
|
19
|
Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, Deng X, Sun SY, Rossi MR, Sica GL, Ramalingam SS, Khuri FR. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med 2016; 14:111. [PMID: 27142472 PMCID: PMC4855771 DOI: 10.1186/s12967-016-0861-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
Background SCLC has limited treatment options and inadequate preclinical models. Promising activity of arsenic trioxide (ASO) recorded in conventional preclinical models of SCLC supported the clinical evaluation of ASO in patients. We assessed the efficacy of ASO in relapsed SCLC patients and in corresponding patient-derived xenografts (PDX). Methods Single arm, Simon 2-stage, phase II trial to enroll patients with relapsed SCLC who have failed at least one line of therapy. ASO was administered as an intravenous infusion over 1–2 h daily for 4 days in week 1 and for 2 days in weeks 2–6 of an 8-week cycle. Treatment continued until disease progression. Pretreatment tumor biopsy was employed for PDX generation through direct implantation into subcutaneous pockets of SCID mice without in vitro manipulation and serially propagated for five generations. Ex vivo efficacy of cisplatin (3 mg/kg i.p. weekly) and ASO (3.75 mg/kg i.p. every other day) was tested in PDX representative of platinum sensitive and platinum refractory SCLC. Results The best response in 17 evaluable patients was stable disease in 2 (12 %), progressive disease in 15 (88 %) patients and median time-to-progression of seven (range 1–7) weeks. PDX was successfully grown in 5 of 9 (56 %) transplanted biopsy samples. Serially-propagated PDXs preserved characteristic small cell histology and genomic stability confirmed by immunohistochemistry, short tandem repeat (STR) profiling and targeted sequencing. ASO showed in vitro cytotoxicity but lacked in vivo efficacy against SCLC PDX tumor growth. Conclusions Cisplatin inhibited growth of PDX derived from platinum-sensitive SCLC but was ineffective against PDX from platinum-refractory SCLC. Strong concordance between clinical and ex vivo effects of ASO and cisplatin in SCLC supports the use of PDX models to prescreen promising anticancer agents prior to clinical testing in SCLC patients. Trial Registration The study was registered at http://www.clinicaltrials.gov (NCT01470248) Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taofeek K Owonikoko
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA.
| | - Guojing Zhang
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Hyun S Kim
- Department of Radiology, Division of Interventional Radiology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | | | - Rabih Bechara
- Department of Medicine, Division of Interventional Pulmonology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Chao Zhang
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Suchita Pakkala
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Rathi Pillai
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Michael R Rossi
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA.,Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Fadlo R Khuri
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Li L, Chen F. Oxidative stress, epigenetics, and cancer stem cells in arsenic carcinogenesis and prevention. ACTA ACUST UNITED AC 2016; 2:57-63. [PMID: 27134817 DOI: 10.1007/s40495-016-0049-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The carcinogenic role of arsenic has been extensively studied for more than half century. How arsenic causes human cancer, however, remains to be fully elucidated. In this brief review, we focus our attentions on the most recent discoveries by us and others on the capabilities of arsenic in inducing generation of reactive oxygen species (ROS), expression of microRNAs (miRNAs) and the generation of the cancer stem cells. We believe that these new understandings on the mechanisms of arsenic-induced carcinogenesis will shed light on the prevention and treatment of human cancers resulted from environmental or occupational arsenic exposure. Furthermore, these latest findings on arsenic-induced cellular responses will also have an important impact on the investigation of the carcinogenic effects of other environmental or occupational carcinogens or hazards.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201
| |
Collapse
|