1
|
Zhou S, Li D, Quan C, Yu Z, Feng Y, Wang S, Li Y, Qi T, Chen J. Pan-cancer profiling of FZD2 as a prognostic biomarker: integrative multi-omics analysis with experimental validation and functional characterization in gastric cancer. Front Pharmacol 2025; 16:1534974. [PMID: 40444048 PMCID: PMC12120476 DOI: 10.3389/fphar.2025.1534974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Background Frizzled class receptor 2 (FZD2), is a critical protein in the Wnt signaling pathway, which plays significant roles in various cancers. However, its role in cancer progression, prognosis, and diagnosis remains largely unexplored. This study investigates the correlation between FZD2 expression and clinical outcomes, as well as its underlying molecular mechanisms in pan-cancer. Methods A comprehensive bioinformatic analysis was performed using pan-cancer data from The Cancer Genome Atlas (TCGA), which included 33 cancer types. Gene set enrichment analysis (GSEA) was conducted to explore functional pathways, while a protein-protein interaction (PPI) network was constructed to further elucidate the role of FZD2 in tumor biology. The relationship between FZD2 expression and immune cell infiltration across 22 categories was assessed using CIBERSORT. Additionally, single-cell analysis was employed to examine FZD2 expression levels across different cell types. To investigate the functional impact of FZD2, loss-of-function experiments were carried out in gastric cancer cell lines using siRNA-mediated knockdown. Subsequent assays, including Polymerase Chain Reaction (PCR), Western blotting (WB), Cell Counting Kit-8 (CCK8), Flow Cytometry, wound healing, and transwell migration and invasion assays, were performed to assess cellular responses. A subcutaneous gastric cancer xenograft model was established in nude mice to investigate the effect of FZD2 knockdown on tumor growth in vivo. Results Our analysis revealed significant upregulation of FZD2 in multiple malignancies, including stomach adenocarcinoma (STAD), bladder cancer (BLCA), and cholangiocarcinoma (CHOL). FZD2 expression was correlated with various cancer characteristics, including stemness score, matrix score, immune score, tumor mutational burden (TMB), microsatellite instability (MSI), RNA modification genes, and drug sensitivity. Notably, FZD2 was associated with altered sensitivity to several anticancer agents, suggesting its role in modulating treatment responses. FZD2 knockdown was demonstrated by both in vitro and in vivo experiments to suppress tumor cell proliferation, migration, and invasion in gastric cancer cell lines, indicating its critical role in tumor progression. Furthermore, FZD2 exhibited significant correlations with other Wnt pathway genes (e.g., Wnt2, Wnt4, Wnt5B), indicating a complex interaction network contributing to tumorigenesis. Conclusion FZD2 is widely upregulated in various tumor types, with its expression closely associated with key clinical outcomes, including overall survival, disease-specific survival, disease-free interval, as well as tumor mutations, drug sensitivity, immune cell infiltration, and immunotherapy-related biomarkers such as TMB and MSI. These findings highlight the pivotal role of FZD2 in cancer prognosis and treatment, offering potential for novel therapeutic approaches and the development of personalized medicine strategies in oncology.
Collapse
Affiliation(s)
- Sijiang Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Da Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Chao Quan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu Yu
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Yue Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Shengyu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Yong Li
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
- Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongtong Qi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, Nanning, China
| |
Collapse
|
2
|
Tuluhong D, Chen T, Wang J, Zeng H, Li H, Dunzhu W, Li Q, Wang S. FZD2 promotes TGF-β-induced epithelial-to-mesenchymal transition in breast cancer via activating notch signaling pathway. Cancer Cell Int 2021; 21:199. [PMID: 33832493 PMCID: PMC8033683 DOI: 10.1186/s12935-021-01866-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/06/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor 2 (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism. METHODS The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. RESULTS FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. CONCLUSION FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.
Collapse
Affiliation(s)
- Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Huijuan Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Wangmu Dunzhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Qiurong Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
3
|
Zhou M, Sun X, Zhu Y. Analysis of the role of Frizzled 2 in different cancer types. FEBS Open Bio 2021; 11:1195-1208. [PMID: 33565732 PMCID: PMC8016138 DOI: 10.1002/2211-5463.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023] Open
Abstract
Frizzled 2 (FZD2) is an important receptor in the Wnt pathway, which is highly expressed in malignant tumors and helps regulate multiple tumor behaviors. Its expression level is related to prognosis. Here, bioinformatic analysis was performed to understand the expression of FZD2 in different tumors. We examined FZD2 expression using pan‐cancer data of 33 cancer types from The Cancer Genome Atlas (TCGA). Differential expression analysis (Wilcoxon's test) was used to compare tumor and normal tissues. Univariate Cox proportional hazard regression was performed to compare gene expression and overall patient survival. COSMIC, cBioPortal, and CCLE were used to examine FZD2 mutations in human cancers. Dryness index was calculated using one‐class logistic regression (OCLR). Spearman's correlation was performed based on gene expression and dryness score and used to analyze the correlation between gene expression and stemness score, matrix score, immune score, estimated score, tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity. STRING website was used to construct an FZD2 protein interaction network and identify genes that interact with FZD2. We report that FZD2 is highly expressed in most tumors, differing between cancer types. Expression was related to patient overall survival (OS), disease‐specific survival, disease‐free interval (DFI), mutations, drug sensitivity, tumor microenvironment, immune cell infiltration, immune checkpoint gene expression, immunotherapy indicators (TMB, MSI), and tumor cell stemness. FZD2 influenced drug sensitivities, including cobimetinib (r = −0.553, P < 0.001), selumetinib (r = −0.539, P < 0.001), bafetinib (r = −0.538, P < 0.001), tamoxifen (r = −0.523, P < 0.001), alvespimycin (r = −0.520, P < 0.001), and nilotinib (r = −0.502, P < 0.001). FZD2 has the most significant correlation with ROR2 (r = 0.4, P < 0.001), Wnt2 (r = 0.37, P < 0.001), and Wnt4A (r = 0.34, P < 0.001). The results confirm the importance of FZD2 expression in cancer prognosis and treatment, and provide new clues for treatment strategies.
Collapse
Affiliation(s)
| | - Xuezhu Sun
- West Anhui Health Vocational College, Anhui, China
| | - Yunhao Zhu
- West Anhui Health Vocational College, Anhui, China
| |
Collapse
|
4
|
Dong D, Na L, Zhou K, Wang Z, Sun Y, Zheng Q, Gao J, Zhao C, Wang W. FZD5 prevents epithelial-mesenchymal transition in gastric cancer. Cell Commun Signal 2021; 19:21. [PMID: 33618713 PMCID: PMC7898745 DOI: 10.1186/s12964-021-00708-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background Frizzled (FZD) proteins function as receptors for WNT ligands. Members in FZD family including FZD2, FZD4, FZD7, FZD8 and FZD10 have been demonstrated to mediate cancer cell epithelial-mesenchymal transition (EMT). Methods CCLE and TCGA databases were interrogated to reveal the association of FZD5 with EMT. EMT was analyzed by investigating the alterations in CDH1 (E-cadherin), VIM (Vimentin) and ZEB1 expression, cell migration and cell morphology. Transcriptional modulation was determined by ChIP in combination with Real-time PCR. Survival was analyzed by Kaplan–Meier method. Results In contrast to other FZDs, FZD5 was identified to prevent EMT in gastric cancer. FZD5 maintains epithelial-like phenotype and is negatively modulated by transcription factors SNAI2 and TEAD1. Epithelial-specific factor ELF3 is a downstream effecter, and protein kinase C (PKC) links FZD5 to ELF3. ELF3 represses ZEB1 expression, further guarding against EMT. Moreover, FZD5 signaling requires its co-receptor LRP5 and WNT7B is a putative ligand for FZD5. FZD5 and ELF3 are associated with longer survival, whereas SNAI2 and TEAD1 are associated with shorter survival. Conclusions Taken together, FZD5-ELF3 signaling blocks EMT, and plays a potential tumor-suppressing role in gastric cancer. ![]()
Video Abstract
Collapse
Affiliation(s)
- Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Lei Na
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Kailing Zhou
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Zhuo Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People's Republic of China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Liu Z, Zhang Y. Expression and prognostic impact of FZDs in pancreatic adenocarcinoma. BMC Gastroenterol 2021; 21:79. [PMID: 33618667 PMCID: PMC7901191 DOI: 10.1186/s12876-021-01643-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Background Despite the high number of researches on pancreatic adenocarcinoma (PAAD) over past decades, little progress had been made due to lack of effective treatment regimens. We aimed to investigate the expression level, mutation, and clinical significance of the Frizzled (FZD) family in PAAD so as to establish a sufficient scientific evidence for clinical decisions and risk management. Methods PAAD samples were extracted from The Cancer Genome Atlas (TCGA). Oncomine, Gene expression profiling interactive analysis (GEPIA), human protein atlas (HPA), Kaplan–Meier Plotter, cBioPortal, LinkedOmics, DAVID database, and R software (× 64 3.6.2) were used to comprehensively analyze the roles of FZDs. p value below to 0.05 was considered as significant difference. Results In total, 179 PAAD tissues and 171 paracancerous tissues were included. The expression levels of FZD1, 2, 6, 7, and 8 were higher in PAAD tissues than those in normal pancreatic tissue. The higher the expression levels of FZD2 and FZD7, the higher the clinical stage. The overall survival (OS) time was significantly different between low FZD3, 4, 5, 6, and 9 expression group and high expression group. Multivariable analysis showed that FZD3 and FZD6 were independent prognostic factors. The recurrence free survival (RFS) time was significantly different between low FZD4 and FZD8 expression group and high expression group. The RFS difference between low FZD6 expression group and high expression group had not reached statistical significance (p = 0.067), which might be due to the small sample size. However, multivariable analysis showed that FZD6 was the only independent factor for RFS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that FZDs played a critical role in the Wnt signaling pathway, which was further confirmation that FZDs were transmembrane receptors of Wnt signaling pathway. Conclusions Our results strongly indicated a crucial role of the FZD family in PAAD. FZD3 and FZD6 could be potential prognostic and predictive markers, and FZD6 might also function as a potential therapeutic target in PAAD by blocking Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Li
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
6
|
Cheng Y, Li L, Pan S, Jiang H, Jin H. Targeting Frizzled-7 Decreases Stemness and Chemotherapeutic Resistance in Gastric Cancer Cells by Suppressing Myc Expression. Med Sci Monit 2019; 25:8637-8644. [PMID: 31733054 PMCID: PMC6874837 DOI: 10.12659/msm.918504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although the promoting roles of Frizzled-7 (Fzd7) have been shown before, its effects in gastric cancer (GC) cell stemness are still unclear. The present study assessed the effects of Fzd7 on GC cell stemness and chemoresistance. MATERIAL AND METHODS Clinical samples were used to detect Fzd7 expression and online datasets were used to analyze the correlation between Fzd7 expression and GC patient prognosis. Quantitative real-time PCR (qPCR), Western blot, and spheroid formation were used to detect the stemness of cells and Fzd7-mediated effects on GC cell stemness. Cell viability was assessed to evaluate the role of Fzd7 in chemoresistance of GC cells. RESULTS We found that the expression of Frizzled-7 (Fzd7), a Wnt receptor, was increased in gastric cancer (GC) cells and tissues. Additionally, Fzd7 expression was correlated with shorter overall survival of GC patients. Knockdown of Fzd7 or using inhibitors of Wnt/Fzd (OMP-18R5/Vantictumad) decreased GC cell stemness, characterized as a decrease of spheroid formation ability and expression of stemness regulators. Notably, Fzd7 knockdown or inhibitors of Wnt/Fzd attenuated the chemoresistance of GC cells. Furthermore, elevation of Myc expression rescued the effects of Fzd7 inhibition on GC cell stemness and chemoresistance. CONCLUSIONS Our results suggest that inhibition of Fzd7 decreases the stemness and chemotherapeutic resistance of GC cells.
Collapse
Affiliation(s)
- Yongzhong Cheng
- Department of Oncology, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Li Li
- Department of Science and Education, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Sirong Pan
- Department of Medicine, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Huilin Jiang
- Department of Oncology, Xiehe Jiangbei Hospital, Wuhan, Hubei, China (mainland)
| | - Hongyan Jin
- Department of Oncology, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| |
Collapse
|
7
|
Bacalini MG, Franceschi C, Gentilini D, Ravaioli F, Zhou X, Remondini D, Pirazzini C, Giuliani C, Marasco E, Gensous N, Di Blasio AM, Ellis E, Gramignoli R, Castellani G, Capri M, Strom S, Nardini C, Cescon M, Grazi GL, Garagnani P. Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature. J Gerontol A Biol Sci Med Sci 2019; 74:1-8. [PMID: 29554203 DOI: 10.1093/gerona/gly048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/12/2022] Open
Abstract
The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8,823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria, we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally, we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt-signaling pathways in the aging of human liver.
Collapse
Affiliation(s)
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy.,DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Francesco Ravaioli
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy
| | - Xiaoyuan Zhou
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, PR China.,University of Chinese Academy of Sciences, Beijing, PR China.,Department of Neurology, University of San Francisco, California
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna, Alma Mater Studiorum, Italy
| | | | - Cristina Giuliani
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Italy
| | - Elena Marasco
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Noémie Gensous
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy
| | | | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gastone Castellani
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy.,Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Italy
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Stephen Strom
- Department of Laboratory Medicine, Karolinska Institute and Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Christine Nardini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,CNR IAC "Mauro Picone", Roma, Italy.,Personal Genomics S.r.l., Verona, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Paolo Garagnani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Applied Biomedical Research Center, S. Orsola-Malpighi Polyclinic, Bologna, Italy.,Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
8
|
Huang L, Luo EL, Xie J, Gan RH, Ding LC, Su BH, Zhao Y, Lin LS, Zheng DL, Lu YG. FZD2 regulates cell proliferation and invasion in tongue squamous cell carcinoma. Int J Biol Sci 2019; 15:2330-2339. [PMID: 31595151 PMCID: PMC6775310 DOI: 10.7150/ijbs.33881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Many studies have shown that FZD2 is significantly associated with tumor development and tumor metastasis. The purpose of the present study was to gain insight into the role of FZD2 in the cell proliferation and invasion of tongue squamous cell carcinoma. According to TCGA-HNSC dataset, among the 10 Frizzled receptors, FZD2 exhibited the highest degree of differential expression between cancer tissues and normal tissues, and the overall survival of patients with higher FZD2 levels was shown to be significantly shorter compared with those with lower FZD2 levels. The upregulation of FZD2 in clinical tongue cancer tissues was validated by real-time PCR. Knockdown of FZD2 inhibited the proliferation, migration and invasion of CAL-27 and TCA-8113 cells, whereas overexpression of FZD2 led to the opposite results. Further analysis revealed that FZD2 is positively correlated with WNT3A, WNT5B, WNT7A and WNT2 and is negatively correlated with WNT4. These results indicated that FZD2 may act as an oncogene in tongue squamous cell carcinoma. Therefore, FZD2 may be a target for the diagnosis, prognosis and gene therapy of tongue cancer.
Collapse
Affiliation(s)
- Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Er-Ling Luo
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China
| | - Jing Xie
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou 350122, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou 350122, China
| | - Lin-Can Ding
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China
| | - Bo-Hua Su
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China
| | - Yong Zhao
- Department of Pathology, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou 350000, China
| | - Li-Song Lin
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Da-Li Zheng
- Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou 350004, China
| | - You-Guang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350000, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou 350004, China
| |
Collapse
|
9
|
Flanagan DJ, Barker N, Costanzo NSD, Mason EA, Gurney A, Meniel VS, Koushyar S, Austin CR, Ernst M, Pearson HB, Boussioutas A, Clevers H, Phesse TJ, Vincan E. Frizzled-7 Is Required for Wnt Signaling in Gastric Tumors with and Without Apc Mutations. Cancer Res 2019; 79:970-981. [PMID: 30622113 DOI: 10.1158/0008-5472.can-18-2095] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
A subset of patients with gastric cancer have mutations in genes that participate in or regulate Wnt signaling at the level of ligand (Wnt) receptor (Fzd) binding. Moreover, increased Fzd expression is associated with poor clinical outcome. Despite these findings, there are no in vivo studies investigating the potential of targeting Wnt receptors for treating gastric cancer, and the specific Wnt receptor transmitting oncogenic Wnt signaling in gastric cancer is unknown. Here, we use inhibitors of Wnt/Fzd (OMP-18R5/vantictumab) and conditional gene deletion to test the therapeutic potential of targeting Wnt signaling in preclinical models of intestinal-type gastric cancer and ex vivo organoid cultures. Pharmacologic targeting of Fzd inhibited the growth of gastric adenomas in vivo. We identified Fzd7 to be the predominant Wnt receptor responsible for transmitting Wnt signaling in human gastric cancer cells and mouse models of gastric cancer, whereby Fzd7-deficient cells were retained in gastric adenomas but were unable to respond to Wnt signals and consequently failed to proliferate. Genetic deletion of Fzd7 or treatment with vantictumab was sufficient to inhibit the growth of gastric adenomas with or without mutations to Apc. Vantictumab is currently in phase Ib clinical trials for advanced pancreatic, lung, and breast cancer. Our data extend the scope of patients that may benefit from this therapeutic approach as we demonstrate that this drug will be effective in treating patients with gastric cancer regardless of APC mutation status. SIGNIFICANCE: The Wnt receptor Fzd7 plays an essential role in gastric tumorigenesis irrespective of Apc mutation status, therefore targeting Wnt/Fzd7 may be of therapeutic benefit to patients with gastric cancer.
Collapse
Affiliation(s)
- Dustin J Flanagan
- University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Nick Barker
- Institute of Medical Biology, Singapore, Singapore.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.,NTU School of Biological Sciences, Singapore, Singapore
| | | | - Elizabeth A Mason
- University of Melbourne, Department of Anatomy and Neuroscience, Melbourne, Victoria, Australia
| | - Austin Gurney
- OncoMed Pharmaceuticals Inc., Redwood City, California
| | - Valerie S Meniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Koushyar
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Chloe R Austin
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Helen B Pearson
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | - Toby J Phesse
- University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia. .,European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Elizabeth Vincan
- University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia. .,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Flanagan DJ, Vincan E, Phesse TJ. Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. Br J Pharmacol 2017; 174:4666-4683. [PMID: 28568899 DOI: 10.1111/bph.13890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer persists as a frequent and deadly disease that claims over 700 000 lives annually. Gastric cancer is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal cancers, making it therapeutically challenging. As such, and largely attributed to late-stage diagnosis, gastric cancer patients show only partial response to standard chemo and targeted molecular therapies, highlighting an urgent need to develop new targeted therapies for this disease. Wnt signalling has a well-documented history in the genesis of many cancers and is, therefore, an attractive therapeutic target. As such, drug discovery has focused on developing inhibitors that target multiple nodes of the Wnt signalling cascade, some of which have progressed to clinical trials. The collective efforts of patient genomic profiling has uncovered genetic lesions to multiple components of the Wnt pathway in gastric cancer patients, which strongly suggest that Wnt-targeted therapies could offer therapeutic benefits for gastric cancer patients. These data have been supported by studies in mouse models of gastric cancer, which identify Wnt signalling as a driver of gastric tumourigenesis. Here, we review the current literature regarding Wnt signalling in gastric cancer and highlight the suitability of each class of Wnt inhibitor as a potential treatment for gastric cancer patients, in relation to the type of Wnt deregulation observed. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Toby J Phesse
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,Cell Signalling and Cancer Laboratory, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Introduction of plasmids into gastric cancer cells by endoscopic ultrasound. Oncol Lett 2017; 13:3127-3130. [PMID: 28521417 PMCID: PMC5431313 DOI: 10.3892/ol.2017.5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Short hairpin RNA of frizzled-2 (shRNA-Fz2) suppresses the cell proliferation of gastric cancer cells. Endoscopic ultrasound (EUS) is considered a suitable method for the introduction of therapeutic plasmids into cells, since the device enables the access and real-time monitoring of gastric cancer tissues. In the present study, plasmids were introduced into cells by sonoporation, as evidenced by the production of H2O2. The production of H2O2 was measured by absorbance of a potassium-starch solution irradiated with EUS. Luciferase activity was analyzed in the cells irradiated with EUS after the addition of a pMetLuc2-control in the media, and cell proliferation was analyzed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay after irradiation with EUS following the addition of shRNA-Fz2. Absorbance levels corresponding to free radical levels were found to be higher in the cells irradiated with EUS. Luciferase activities were found to be significantly higher in the transfected cells (plasmid with Lipofectamine LTX) than in untreated cells and were furthermore found to be higher in MKN45 cells irradiated for 0.5 min than in cells not subjected to irradiation. Luciferase activity was also found to be higher in MKN74 cells irradiated for 2 min than in cells that were not irradiated. Although the cell proliferation of the MKN45 cells tended to be suppressed by irradiation with EUS, this was non-significant suppression, while the cell proliferation of MKN74 cells was found to be suppressed by irradiation with 12 MHz for 2 min (P<0.05). In conclusion, plasmids were introduced into cultured gastric cancer cells by irradiation with EUS due to sonoporation, as evidenced by the production of H2O2; however, the efficiency of the plasmid introduction was low compared with a traditional transfection approach.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Naoki Ishige
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|