1
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z, Sun F. Regulation of the Function and Expression of EpCAM. Biomedicines 2024; 12:1129. [PMID: 38791091 PMCID: PMC11117676 DOI: 10.3390/biomedicines12051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.
Collapse
Affiliation(s)
- Di Xiao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingrui Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanxiang Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Chen
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
3
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
4
|
Xu P, Zou M, Wang S, Li T, Liu C, Wang L, Wang L, Luo F, Wu T, Yan J. Construction and characterization of a truncated tissue factor‑coagulation‑based composite system for selective thrombosis in tumor blood vessels. Int J Oncol 2019; 55:823-832. [PMID: 31432158 PMCID: PMC6741845 DOI: 10.3892/ijo.2019.4855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
The selective induction of tumor vascular thrombosis using truncated tissue factor (tTF) delivered via a target ligand is a promising novel antitumor strategy. In the present study, an anti-neuropilin-1 (NRP-1) monoclonal antibody (mAb)-streptavidin (SA):tTF-biotin (B) composite system was established. In this system, anti-NRP-1-mAb located tTF to the tumor vascular endothelial cell surface and induced vascular embolization. Due to their high binding affinity, SA and B were used to enhance thrombogenic activity. mAb was conjugated with SA using a coupling method with water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. Biotinylated tTF (tTF-B) was prepared using a B-labeling kit subsequent to the generation and purification of fusion protein tTF. Confocal microscopy and flow cytometry indicated that the anti-NRP-1-mAb-SA conjugate retained mAb targeting activity. The preservation of B-conjugate binding capacity was confirmed using a competitive ELISA, and factor X-activation analysis revealed that tTF-B retained the procoagulant activity exhibited by tTF. Live imaging was performed to assess mAb-SA distribution and tumor-targeting capability, and this yielded promising results. The results of in vivo studies in mice with subcutaneous xenografts demonstrated that this composite system significantly induced tumor vascular thrombosis and inhibited tumor growth, whereas these histological changes were not observed in normal organs.
Collapse
Affiliation(s)
- Peilan Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyuan Zou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
5
|
Zhao MW, Yang P, Zhao LL. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson's disease. ENVIRONMENTAL TOXICOLOGY 2019; 34:699-707. [PMID: 30835941 DOI: 10.1002/tox.22736] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The insecticide exposure has been linked to Parkinson's disease (PD). In the present study, we used a most widely used cell line in study of PD, the SH-SY5Y cells, to investigate mechanisms of chlorpyrifos (CPF) induced cell toxicity and the possible roles of cell pyroptosis and oxidative stress in SH-SY5Y cells, as well as role of miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in this process. METHODS SH-SY5Y cells were treated with different concentrations of CPF. Cell viability was measured using CCK-8 assay. Cell pyroptosis was determined by immunofluorescence of caspase-1 and TUNEL assay. The miR-181 (has-miR-181-5p) level was determined by qRT-PCR. Expression of SIRT1, PGC-1α, Nrf2, and pyroptosis related proteins NLRP3, caspase-1, IL-1β, and IL-18 was determined by both qRT-PCR and Western blotting. RESULTS Cell viability was found to be decreased with the increased CPF concentrations. The pyroptosis related proteins, ROS levels, as well as level of caspase-1 and the TUNEL positive cells were all significantly up-regulated by CPF. Meanwhile, expression of miR-181 and pyroptosis proteins was also enhanced, while the SIRT1/PGC-1α/Nrf2 signaling was inhibited by CPF. Knockdown of Nrf2 significantly up-regulated the expression of pyroptosis related proteins, ROS level, caspase-1, and the TUNEL positive cells, while over-expression of Nrf2 resulted in opposite results. The expression of PGC-1α and Nrf2 was significantly down-regulated when SIRT1 was inhibited, while over-expressed SIRT1 led to increased PGC-1α and Nrf2 levels. Besides, miR-181 promoted the CPF induced activation of pyroptosis and oxidative stress, as well as down-regulated SIRT1/PGC-1α/Nrf2 signaling, while inhibition of miR-181 led to opposite results. CONCLUSIONS Chlorpyrifos could inhibit cell proliferation, activate cell pyroptosis and increase susceptibility on oxidative stress-induced toxicity by elevating miR-181 through down-regulation of the SIRT1/PGC-1α/Nrf2 pathway in human neuroblastoma SH-SY5Y cells. This study might give deeper insights for mechanisms of CPF induced toxicity and might give some novel research targets for PD treatment.
Collapse
Affiliation(s)
- Meng-Wen Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pu Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Xie X, Zhang X, Chen J, Tang X, Wang M, Zhang L, Guo Z, Shen W. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int J Oncol 2019; 54:905-915. [PMID: 30483763 PMCID: PMC6365027 DOI: 10.3892/ijo.2018.4637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/06/2022] Open
Abstract
Fe3O4-magnetic liposome (MLP) can deliver drugs to target tissues and can increase drug efficacy. The present study aimed to investigate the effects of solamargine (SM) and Fe3O4-SM in pancreatic cancer (PC). Cell viability was detected using a Cell Counting kit‑8 assay. Apoptosis and cell cycle progression was tested using a flow cytometry assay. A scratch assay was used to examine cell metastasis. Quantitative polymerase chain reaction, western blot analysis or immunohistochemical analysis were performed to determine the expression of target factors. Magnetic resonance imagining (MRI) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling were conducted to detect tumor growth and apoptosis in vivo, respectively. It was demonstrated that Fe3O4-SM inhibited cancer cell growth via a slow release of SM over an extended period of time. SM was revealed to induce apoptosis and cell cycle arrest. Furthermore, SM decreased the expression of X-linked inhibitor of apoptosis, Survivin, Ki‑67, proliferating cell nuclear antigen and cyclin D1, but increased the activity of caspase-3. It was also observed that SM inhibited tumor cell metastasis by modulating the expression of matrix metalloproteinase (MMP)-2 and TIMP metallopeptidase inhibitor-2. Furthermore, the phosphorylation of protein kinase B and mechanistic target of rapamycin was suppressed by SM. Notably, the effect of SM was enhanced by Fe3O4-SM. The malignant growth of PC was decreased by SM in vivo. Furthermore, the expression of Ki‑67 was decreased by SM and Fe3O4-SM. Additionally, cell apoptosis was increased in the Fe3O4-SM group, compared with the SM group. The present study illustrated the antitumor effect and action mec-hanism produced by SM. Additionally, it was demonstrated that Fe3O4-SM was more effective than SM in protecting against PC.
Collapse
Affiliation(s)
| | | | | | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | | | | | | | | |
Collapse
|
7
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
8
|
Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett 2018; 433:165-175. [DOI: 10.1016/j.canlet.2018.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
|
9
|
Han S, Zong S, Shi Q, Li H, Liu S, Yang W, Li W, Hou F. Is Ep-CAM Expression a Diagnostic and Prognostic Biomarker for Colorectal Cancer? A Systematic Meta-Analysis. EBioMedicine 2017; 20:61-69. [PMID: 28558958 PMCID: PMC5478257 DOI: 10.1016/j.ebiom.2017.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 01/15/2023] Open
Abstract
Background Cancer stem cell (CSC) epithelial cell adhesion molecule (Ep-CAM) is frequently expressed in colorectal cancer (CRC). However, the clinical significance of Ep-CAM expression in CRC is not clear. This study evaluated whether Ep-CAM provided valuable insight as a molecular biomarker for CRC diagnosis and prognosis and the potential of Ep-CAM as a novel therapeutic target in CRC. Methods Publications were selected online using electronic databases. The pooled odds ratios (ORs) or hazard ratios (HRs) with their 95% confidence intervals (95% CIs), and the combined sensitivity, specificity, and area under the curve (AUC) were calculated and summarized. Results Eleven eligible articles published in English involving 4561 cases were analyzed in this study. Ep-CAM expression was significantly higher in CRC compared with normal controls, and its overexpression was negatively linked to tumor differentiation, tumor stage, vascular invasion, depth of tumor invasion, lymph node metastasis, distant metastasis, and tumor budding in CRC patients. The loss of Ep-CAM expression positively correlated with these characteristics. Multivariate analysis of loss of Ep-CAM expression correlated with a poor prognosis in disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). The pooled sensitivity, specificity and AUC values of Ep-CAM expression in patients with CRC vs. normal controls were 0.93, 0.90, and 0.94, respectively. Conclusions The present findings suggest that Ep-CAM expression may be associated with CRC carcinogenesis, while the loss of Ep-CAM expression is correlated with the progression, metastasis, and poor prognosis of CRC. Ep-CAM expression may be a useful biomarker for the clinical diagnosis of CRC. Cancer stem cell (CSC) epithelial cell adhesion molecule (Ep-CAM) expression may correlate with CRC tumorigenesis. Frequent overexpression of Ep-CAM was a favorable factor for CRC progression and metastasis.
Loss of Ep-CAM expression correlated with the progression, metastasis, and poor prognosis of patients with CRC. Ep-CAM expression may be a potential marker for the detection of CRC.
Ep-CAM expression was reported in CRC, but no clear direction for the diagnostic and prognostic effects of Ep-CAM expression was documented in patients with CRC. We performed a systematic meta-analysis of the existing evidence to determine the clinical significance of Ep-CAM expression in CRC. The findings indicated that Ep-CAM expression was associated with CRC risk. Frequent overexpression of Ep-CAM correlated with a decreased risk of CRC progression and metastasis, and loss of Ep-CAM expression played an important role in CRC progression, metastasis and prognosis. The detection of Ep-CAM expression may be a promising biomarker in diagnosing CRC.
Collapse
Affiliation(s)
- Susu Han
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Shaoqi Zong
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Qi Shi
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Hongjia Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Shanshan Liu
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Wei Yang
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Wen Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China.
| | - Fenggang Hou
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, 274 Zhijiang Road, Shanghai 200071, People's Republic of China.
| |
Collapse
|
10
|
Jing X, Wu H, Ji X, Wu H, Shi M, Zhao R. Cortactin promotes cell migration and invasion through upregulation of the dedicator of cytokinesis 1 expression in human colorectal cancer. Oncol Rep 2016; 36:1946-1952. [PMID: 27633051 DOI: 10.3892/or.2016.5058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Cortactin (CTTN), a major substrate of the Src tyrosine kinase, has been implicated in cell proliferation, motility and invasion in various types of cancer. However, the molecular mechanisms of CTTN-driven malignant behavior remain unclear. In the current study, we determined the expression of CTTN in colorectal cancer and investigated its underlying mechanism in the metastasis of colorectal cancer. We confirmed increased CTTN expression in lymph node-positive CRC specimens and highly invasive CRC cell lines. Further study has shown that overexpression of CTTN promoted CRC cell migration and invasion, whereas CTTN silencing inhibited CRC cell migratory and invasive capacities in vitro. Mechanistically, CTTN increases expression of dedicator of cytokinesis 1 (DOCK1) and gene silencing of DOCK1 partially abolishes the migration and invasion capacity by CTTN. Our findings indicate that CTTN promotes metastasis of CRC cells by increasing DOCK1 expression and this could offer a promising therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Xiaoqian Jing
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huo Wu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaopin Ji
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Haoxuan Wu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Minmin Shi
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ren Zhao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
11
|
An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 2016; 6:24947-68. [PMID: 26317650 PMCID: PMC4694806 DOI: 10.18632/oncotarget.4453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is known to be overexpressed in epithelial cancers associated with enhanced malignant potential, particularly colorectal carcinoma (CRC) and head and neck squamous cell carcinoma (HNSCC). However, it is unknown whether progression of malignance can be directly inhibited by targeting EpCAM. Here, we have generated five novel monoclonal antibodies (mAbs) against EpCAM. One of these anti-EpCAM mAbs, EpAb2-6, was found to induce cancer cell apoptosis in vitro, inhibit tumor growth, and prolong the overall survival of both a pancreatic cancer metastatic mouse model and mice with human colon carcinoma xenografts. EpAb2-6 also increases the therapeutic efficacy of irinotecan, fluorouracil, and leucovorin (IFL) therapy in a colon cancer animal model and gemcitabine therapy in a pancreatic cancer animal model. Furthermore, EpAb2-6, which binds to positions Y95 and D96 of the EGF-II/TY domain of EpCAM, inhibits production of EpICD, thereby decreasing its translocation and subsequent signal activation. Collectively, our results indicate that the novel anti-EpCAM mAb can potentially be used for cancer-targeted therapy.
Collapse
|
12
|
Zhou J, Jiang J, Wang S, Xia X. Epithelial cell adhesion molecule-1 (ECAM1) is required in the maintenance of corneal epithelial barrier integrity. Cell Biol Int 2015; 40:49-54. [PMID: 26269209 DOI: 10.1002/cbin.10522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/08/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology; Huaian First People's Hospital; Nanjing Medical University; Huaian 223300 China
| | - Jian Jiang
- Department of Ophthalmology; Xiangya Hospital Central South University; Changsha 410008 China
| | - Shuhong Wang
- Department of Ophthalmology; Huaian First People's Hospital; Nanjing Medical University; Huaian 223300 China
| | - Xiaobo Xia
- Department of Ophthalmology; Xiangya Hospital Central South University; Changsha 410008 China
| |
Collapse
|