1
|
Liskova V, Chovancova B, Galvankova K, Klena L, Matyasova K, Babula P, Grman M, Rezuchova I, Bartosova M, Krizanova O. Slow Sulfide Donor GYY4137 Increased the Sensitivity of Two Breast Cancer Cell Lines to Paclitaxel by Different Mechanisms. Biomolecules 2024; 14:651. [PMID: 38927055 PMCID: PMC11202087 DOI: 10.3390/biom14060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent affecting microtubule polymerization. The efficacy of PTX depends on the type of tumor, and its improvement would be beneficial in patients' treatment. Therefore, we tested the effect of slow sulfide donor GYY4137 on paclitaxel sensitivity in two different breast cancer cell lines, MDA-MB-231, derived from a triple negative cell line, and JIMT1, which overexpresses HER2 and is resistant to trastuzumab. In JIMT1 and MDA-MB-231 cells, we compared IC50 and some metabolic (apoptosis induction, lactate/pyruvate conversion, production of reactive oxygen species, etc.), morphologic (changes in cytoskeleton), and functional (migration, angiogenesis) parameters for PTX and PTX/GYY4137, aiming to determine the mechanism of the sensitization of PTX. We observed improved sensitivity to paclitaxel in the presence of GYY4137 in both cell lines, but also some differences in apoptosis induction and pyruvate/lactate conversion between these cells. In MDA-MB-231 cells, GYY4137 increased apoptosis without affecting the IP3R1 protein, changing the morphology of the cytoskeleton. A mechanism of PTX sensitization by GYY4137 in JIMT1 cells is distinct from MDA-MB-231, and remains to be further elucidated. We suggest different mechanisms of action for H2S on the paclitaxel treatment of MDA-MB-231 and JIMT1 breast cancer cell lines.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Kristina Galvankova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Ladislav Klena
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Katarina Matyasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia; (I.R.); (M.B.)
| | - Maria Bartosova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia; (I.R.); (M.B.)
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| |
Collapse
|
2
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:cancers15082390. [PMID: 37190316 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
5
|
Zhang Z, Wu B, Shao Y, Chen Y, Wang D. A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS One 2022; 17:e0278556. [PMID: 36542612 PMCID: PMC9770376 DOI: 10.1371/journal.pone.0278556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with some tumors such as head and neck carcinoma. But renal cell carcinoma is an exception. The prognostic value of CAIX in RCC used to be associated with patients' survival according to published works. This study aimed to rectify the former conclusion. METHODS This study was registered in PROSPERO (CRD42020160181). A literature search of the PubMed, Embase, Cochrane library and Web of Science databases was performed to retrieve original studies until April of 2022. Twenty-seven studies, including a total of 5462 patients with renal cell carcinoma, were reviewed. Standard meta-analysis methods were used to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio and its 95% confidence interval were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Stata 11.0. Then we verify the meta-analysis resort to bioinformatics (TCGA). RESULTS Our initial search resulted in 908 articles in total. From PubMed, Embase, Web of Science electronic and Cochrane library databases, 493, 318 and 97 potentially relevant articles were discovered, respectively. We took the analysis between CA9 and disease-specific survival (HR = 1.18, 95% CI: 0.82-1.70, I2 = 79.3%, P<0.05), a subgroup then was performed to enhance the result (HR = 1.63, 95%CI: 1.30-2.03, I2 = 26.3%, P = 0.228); overall survival was also parallel with the former (HR = 1.13, 95%CI: 0.82-1.56, I2 = 79.8%, P<0.05), then a subgroup also be performed (HR = 0.90, 95%CI:0.75-1.07, I2 = 23.1%, P = 0.246) to verify the result; the analysis between CAIX and progression-free survival got the similar result (HR = 1.73, 95%CI:0.97-3.09, I2 = 82.4%, P<0.05), we also verify the result by subgroup analysis (HR = 1.04, 95%CI:0.79-1.36, I2 = 0.0%, P = 0.465); at last the relationship between CAIX and recurrence-free survival got the same result, too (HR = 0.99, 95%CI: 0.95-1.02, I2 = 57.8%, P = 0.050), the subgroup's result was also parallel with the former (HR = 1.01, 95%CI: 0.91-1.03, I2 = 0.00%, P = 0.704). To validate our meta-analysis, we took a bioinformatic analysis based on TCGA database, survival curve between low and high CAIX expression in four endpoints (DSS, OS, PFI, DFI) have corresponding P value (DSS:P = 0.23, OS:P = 0.77, PFI:P = 0.25, DFI:P = 0.78). CONCLUSIONS CAIX expression in patients with RCC is an exception to predict tumor survival. Both low CAIX expression and high expression are not associated with survivals in RCC patients.
Collapse
Affiliation(s)
- Zikuan Zhang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Bo Wu
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yuan Shao
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yongquan Chen
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Dongwen Wang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Zhang X, Chen Y, Li H, Chen B, Liu Z, Wu G, Li C, Li R, Cao Y, Zhou J, Shen M, Liu H, Tao J. Sulforaphane Acts Through NFE2L2 to Prevent Hypoxia-Induced Apoptosis in Porcine Granulosa Cells via Activating Antioxidant Defenses and Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8097-8110. [PMID: 35729769 DOI: 10.1021/acs.jafc.2c01978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In mammals, a vast majority of ovarian follicles undergo atresia, which is caused by granulosa cell (GC) apoptosis. GCs in follicles are exposed to low oxygen. Hypoxia triggers reactive oxygen species (ROS) generation, which leads to cell oxidative stress and apoptosis. Sulforaphane (SFN), a phytochemical isothiocyanate enriched in cruciferous vegetables, has exhibited a crucial role in mitigating oxidative stress. To explore the effect of SFN on porcine GC apoptosis in a hypoxic environment, we handled the established hypoxia model (1% O2) of cultured porcine GCs with SFN. Results showed that SFN rescued hypoxia-induced apoptosis and viability of GCs. Meanwhile, SFN increased the expression of antioxidant enzymes and reduced the accumulation of ROS in GC cytoplasm and mitochondria under hypoxia. Mechanically, SFN activated the transcription factor of redox-sensitive nuclear factor-erythroid 2-related factor 2 (NFE2L2) entering the nucleus, further inducing mitophagy and increased antioxidant capacity, finally alleviating the adverse effect of hypoxia on porcine GCs. In conclusion, SFN inhibited hypoxia-evoked GC apoptosis by activating antioxidant defenses and mitophagy through NFE2L2. New targets may be provided for regulating follicular development and atresia by these findings.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongmin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baobao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Kajsik M, Chovancova B, Liskova V, Babula P, Krizanova O. Slow sulfide donor GYY4137 potentiates effect of paclitaxel on colorectal carcinoma cells. Eur J Pharmacol 2022; 922:174875. [DOI: 10.1016/j.ejphar.2022.174875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
|
8
|
Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022; 19:179-197. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The development and application of novel therapeutic medicines for the treatment of cancer are of vital importance to improve the disease's outcome and survival rate. One noteworthy treatment approach is the use of biologically active compounds present in natural products. Even though these phytocompounds present anti-inflammatory, antioxidant, and anticancer properties, their use is limited essentially due to poor systemic delivery, low bioavailability, and water solubility concerns. To make full use of the anticancer potential of natural products, these limitations need to be technologically addressed. In this sense, nanotechnology emerges as a promising drug delivery system strategy. AREAS COVERED In this review, the benefits and potential of nanodelivery systems for natural products encapsulation as promising therapeutic approaches for cancer, which were developed during the last decade, are highlighted. EXPERT OPINION The nanotechnology area has been under extensive research in the medical field given its capacity for improving the therapeutic potential of drugs by increasing their bioavailability and allowing a targeted delivery to the tumor site. Thereby, the nanoencapsulation of phytocompounds can have a direct impact on the recognized therapeutic activity of natural products towards cancer.
Collapse
Affiliation(s)
- Catarina Melim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Mariana Magalhães
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
9
|
Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem 2022; 232:114205. [DOI: 10.1016/j.ejmech.2022.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
10
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
11
|
Li L, Liu W, Tang H, Wang X, Liu X, Yu Z, Gao Y, Wang X, Wei M. Hypoxia-related prognostic model in bladder urothelial reflects immune cell infiltration. Am J Cancer Res 2021; 11:5076-5093. [PMID: 34765313 PMCID: PMC8569353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023] Open
Abstract
Hypoxia is a common feature of tumor microenvironment (TME). This study aims to establish the genetic features related to hypoxia in Bladder urothelial carcinoma (BLCA) and investigate the potential correlation with hypoxia in the TME and immune cells. We established a BLCA outcome model using the hypoxia-related genes from The Cancer Genome Atlas using regression analysis and verified the model using the Gene Expression Omnibus GSE32894 cohort. We measured the effect of each gene in the hypoxia-related risk model using the Human Protein Atlas website. The predictive abilities were compared using the area under the receiver operating characteristic curves. Gene Set Enrichment Analysis was utilized for indicating enrichment pathways. We analyzed immune cell infiltration between risk groups using the CIBERSORT method. The indicators related to immune status between the two groups were also analyzed. The findings indicated that the high-risk group had better outcomes than the low-risk group in the training and validation sets. Each gene in the model affected the survival of BLCA patients. Our hypoxia-related risk model had better performance compared to other hypoxia-related markers (HIF-1α and GLUT-1). The high-risk group was enriched in immune-related pathways. The expression of chemokines and immune cell markers differed significantly between risk groups. Immune checkpoints were more highly expressed in the high-risk group. These findings suggest that the hypoxia-related risk model predicts patients' outcomes and immune status in BLCA risk groups. Our findings may contribute to the treatment of BLCA.
Collapse
Affiliation(s)
- Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTDShenyang, Liaoning, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xinli Liu
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityShenyang 110042, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Yanan Gao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical UniversityShenyang 117004, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTDShenyang, Liaoning, China
| |
Collapse
|
12
|
Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: The major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol 2021; 162:103327. [PMID: 33862250 DOI: 10.1016/j.critrevonc.2021.103327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is the most commonly used first-line drug for cancer treatment. However, many patients develop resistance to cisplatin therapy which ultimately results in therapy failure and increased mortality. A growing body of evidence shows that the hypoxic microenvironment is the prime factor underlying tumor insensitivity to cisplatin treatment. Since tumors in the majority of cancer patients are under hypoxic stress (low oxygen supply), it becomes necessary to understand the pathobiology behind hypoxia-induced cisplatin resistance in cancer cells. Here, we discuss the molecular events that render hypoxic tumors insensitive to cisplatin therapy. Furthermore, various drugs and tumor oxygenation techniques have been developed to circumvent cisplatin resistance in hypoxic tumors. However, their pharmaceutical applications are limited due to failures in clinical investigations and a lack of preclinical studies in the hypoxic tumor microenvironment. This review addresses these challenges and provides new directions for the strategic deployment of cisplatin sensitizers in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, 600095, Tamilnadu, India.
| | - Reji Manjunathan
- Multidisciplinary Research Unit, Chengalpattu Government Medical College, Chengalpattu, 603001, Tamilnadu, India.
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, TRUE Campus, CN Block-6, Sector V, Salt Lake, Kolkata, 700 091, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
14
|
Ma Z, Xiang X, Li S, Xie P, Gong Q, Goh BC, Wang L. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin Cancer Biol 2020; 80:379-390. [PMID: 33002608 DOI: 10.1016/j.semcancer.2020.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Rapid progress in molecular cancer biology coupled with the discovery of novel oncology drugs has opened new horizons for cancer target discovery. As one of the crucial signaling pathways related to tumorigenesis, hypoxia-inducible factor-1 (HIF-1) coordinates the activity of many transcription factors and their downstream molecules that impact tumor growth and metastasis. Accumulating evidence suggests that the transcriptional responses to acute hypoxia are mainly attributable to HIF-1α. Moreover, the overexpression of HIF-1α in several solid cancers has been found to be strongly associated with poor prognosis. Thus, pharmacological targeting of the HIF-1 signaling pathways has been considered as a new strategy for cancer therapy in the recent years. Although over the past decade, tremendous efforts have been made in preclinical studies to develop new HIF-1 inhibitors from natural products (reservoirs of novel therapeutic agents), to date, these efforts have not been successfully translated into clinically available treatments. In this review, we provide new insights into the bio-pharmacological considerations for selecting natural compounds as potential HIF-1 inhibitors to accelerate anti-cancer drug development. In addition, we highlighted the importance of assessing the dependency of cancer on HIF1A to shortlist cancer types as suitable disease models. This may subsequently lead to new paradigms for discovering more HIF-1 inhibitors derived from natural products and facilitate the development of potent therapeutic agents targeting specific cancer types.
Collapse
Affiliation(s)
- Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shiya Li
- Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peng Xie
- School of Pharmacy, Fudan University, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Quan Gong
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China.
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
15
|
Calcabrini C, Maffei F, Turrini E, Fimognari C. Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects. Front Pharmacol 2020; 11:567. [PMID: 32425794 PMCID: PMC7207042 DOI: 10.3389/fphar.2020.00567] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The success of cancer therapy is often compromised by the narrow therapeutic index of many anticancer drugs and the occurrence of drug resistance. The association of anticancer therapies with natural compounds is an emerging strategy to improve the pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical found in cruciferous vegetables, targets multiple pathways involved in cancer development, as recorded in different cancers such as breast, brain, blood, colon, lung, prostate, and so forth. As examples to make the potentialities of the association chemotherapy raise, here we highlight and critically analyze the information available for two associations, each composed by a paradigmatic anticancer drug (cisplatin or doxorubicin) and sulforaphane.
Collapse
Affiliation(s)
- Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| |
Collapse
|
16
|
Mandrich L, Caputo E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020; 12:nu12030868. [PMID: 32213900 PMCID: PMC7146209 DOI: 10.3390/nu12030868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics (I.G.B.) “A. Buzzati-Traverso”, CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Herbal nutraceuticals: safe and potent therapeutics to battle tumor hypoxia. J Cancer Res Clin Oncol 2019; 146:1-18. [DOI: 10.1007/s00432-019-03068-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
18
|
Bayat Mokhtari R, Baluch N, Morgatskaya E, Kumar S, Sparaneo A, Muscarella LA, Zhao S, Cheng HL, Das B, Yeger H. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer 2019; 19:864. [PMID: 31470802 PMCID: PMC6716820 DOI: 10.1186/s12885-019-6018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada.
| | - Narges Baluch
- Department of Pediatrics, Queen's University, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Williams Science Hall 3035, Department of Pharmaceutical Sciences 601 S. Saddle Creek Rd, Omaha, NE, 68106, USA
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Sheyun Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hai-Ling Cheng
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, ON, M5S 3G9, Canada
| | - Bikul Das
- Thoreau Laboratory for Global Health, M2D2, University of Massachusetts-Lowell, Innovation Hub, 110 Canal St, Lowell, MA, 01852, USA.,KaviKrishna Laboratory, Indian Institute of Technology Complex, Guwahati, India
| | - Herman Yeger
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
19
|
Szadvari I, Hudecova S, Chovancova B, Matuskova M, Cholujova D, Lencesova L, Valerian D, Ondrias K, Babula P, Krizanova O. Sodium/calcium exchanger is involved in apoptosis induced by H 2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide 2019; 87:1-9. [PMID: 30849492 DOI: 10.1016/j.niox.2019.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023]
Abstract
We explored possibility that sodium/calcium exchanger 1 (NCX1) is involved in pH modulation and apoptosis induction in GYY4137 treated cells. We have shown that although 10 days treatment with GYY4137 did not significantly decreased volume of tumors induced by colorectal cancer DLD1 cells in nude mice, it already induced apoptosis in these tumors. Treatment of DLD1 and ovarian cancer A2780 cells with GYY4137 resulted in intracellular acidification in a concentration-dependent manner. We observed increased mRNA and protein expression of both, NCX1 and sodium/hydrogen exchanger 1 (NHE1) in DLD1-induced tumors from GYY4137-treated mice. NCX1 was coupled with NHE1 in A2780 and DLD1 cells and this complex partially disintegrated after GYY4137 treatment. We proposed that intracellular acidification is due to uncoupling of NCX1/NHE1 complex rather than blocking of the reverse mode of NCX1, probably due to internalization of NHE1. Results might contribute to understanding molecular mechanism of H2S-induced apoptosis in tumor cells.
Collapse
Affiliation(s)
- Ivan Szadvari
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubomira Lencesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - David Valerian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Olga Krizanova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
20
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
21
|
Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5438179. [PMID: 29977456 PMCID: PMC6011061 DOI: 10.1155/2018/5438179] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN), a compound derived from cruciferous vegetables that has been shown to be safe and nontoxic, with minimal/no side effects, has been extensively studied due to its numerous bioactivities, such as anticancer and antioxidant activities. SFN exerts its anticancer effects by modulating key signaling pathways and genes involved in the induction of apoptosis, cell cycle arrest, and inhibition of angiogenesis. SFN also upregulates a series of cytoprotective genes by activating nuclear factor erythroid-2- (NF-E2-) related factor 2 (Nrf2), a critical transcription factor activated in response to oxidative stress; Nrf2 activation is also involved in the cancer-preventive effects of SFN. Accumulating evidence supports that epigenetic modification is an important factor in carcinogenesis and cancer progression, as epigenetic alterations often contribute to the inhibition of tumor-suppressor genes and the activation of oncogenes, which enables cells to acquire cancer-promoting properties. Studies on the mechanisms underlying the anticancer effects of SFN have shown that SFN can reverse such epigenetic alterations in cancers by targeting DNA methyltransferases (DNMTs), histone deacetyltransferases (HDACs), and noncoding RNAs. Therefore, in this review, we will discuss the anticancer activities of SFN and its mechanisms, with a particular emphasis on epigenetic modifications, including epigenetic reactivation of Nrf2.
Collapse
|
22
|
Kathawala RJ, Kudelka A, Rigas B. The Chemoprevention of Ovarian Cancer: the Need and the Options. CURRENT PHARMACOLOGY REPORTS 2018; 4:250-260. [PMID: 30363743 PMCID: PMC6182352 DOI: 10.1007/s40495-018-0133-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Ovarian cancer (OvCa) is the most lethal of all gynecological cancers, with a 5-year survival around 46%, mainly due to limitations in early diagnosis and treatment. Consequently, the chemoprevention of OvCa emerges as an important option to control this dismal disease. Here, we discuss the role of risk assessment in the design of chemoprevention strategies for OvCa, describe candidate agents, and assess future directions in this field. RECENT FINDINGS OvCa chemoprevention represents an opportunity for all women, especially those at high risk such as carriers of BRCA1 or BRCA2 mutations. The use of oral contraceptives confers substantial protection against OvCa including women at high risk, which increases with longer use. Despite strong evidence for their efficacy, safety concerns and the magnitude of the requisite interventional clinical trials seem to have precluded definitive studies of oral contraceptives for this application. Several other classes of drugs, including non-steroidal anti-inflammatory drugs, retinoids, angiopreventive agents, poly(ADP-ribose) polymerase inhibitors, and tyrosine kinase inhibitors have shown promise for OvCa chemoprevention. SUMMARY Currently, no agent is proven by interventional trials to possess chemopreventive properties against OvCa. The key opportunities in the chemoprevention of OvCa include the development of surrogate biomarkers for OvCa, the molecular definition of OvCa risk that will help select those who may benefit the most from chemoprevention, the identification of additional agents likely driven by understanding the molecular pathogenesis of OvCa, and the development of dedicated resources and support mechanisms for OvCa. Overall, there is significant optimism for the future of OvCa chemoprevention.
Collapse
Affiliation(s)
| | - Andrzej Kudelka
- Department of Medicine, Stony Brook University, Stony Brook, NY USA
| | - Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
23
|
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget 2018; 8:38022-38043. [PMID: 28410237 PMCID: PMC5514969 DOI: 10.18632/oncotarget.16723] [Citation(s) in RCA: 1422] [Impact Index Per Article: 203.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the mono-therapy approach because it targets key pathways in a characteristically synergistic or an additive manner. This approach potentially reduces drug resistance, while simultaneously providing therapeutic anti-cancer benefits, such as reducing tumour growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancers are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time-consuming. Therefore, new strategies that target the survival pathways that provide efficient and effective results at an affordable cost are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA-approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy, thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Furthermore, we also review important repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Tina S Homayouni
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Narges Baluch
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sushil Kumar
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bikul Das
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Herman Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Juengel E, Maxeiner S, Rutz J, Justin S, Roos F, Khoder W, Tsaur I, Nelson K, Bechstein WO, Haferkamp A, Blaheta RA. Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Oncotarget 2018; 7:85208-85219. [PMID: 27863441 PMCID: PMC5356730 DOI: 10.18632/oncotarget.13421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023] Open
Abstract
Although the mechanistic target of rapamycin (mTOR) inhibitor, everolimus, has improved the outcome of patients with renal cell carcinoma (RCC), improvement is temporary due to the development of drug resistance. Since many patients encountering resistance turn to alternative/complementary treatment options, an investigation was initiated to evaluate whether the natural compound, sulforaphane (SFN), influences growth and invasive activity of everolimus-resistant (RCCres) compared to everolimus-sensitive (RCCpar) RCC cell lines in vitro. RCC cells were exposed to different concentrations of SFN and cell growth, cell proliferation, apoptosis, cell cycle, cell cycle regulating proteins, the mTOR-akt signaling axis, adhesion to human vascular endothelium and immobilized collagen, chemotactic activity, and influence on surface integrin receptor expression were investigated. SFN caused a significant reduction in both RCCres and RCCpar cell growth and proliferation, which correlated with an elevation in G2/M- and S-phase cells. SFN induced a marked decrease in the cell cycle activating proteins cdk1 and cyclin B and siRNA knock-down of cdk1 and cyclin B resulted in significantly diminished RCC cell growth. SFN also modulated adhesion and chemotaxis, which was associated with reduced expression of the integrin subtypes α5, α6, and β4. Distinct differences were seen in RCCres adhesion and chemotaxis (diminished by SFN) and RCCpar adhesion (enhanced by SFN) and chemotaxis (not influenced by SFN). Functional blocking of integrin subtypes demonstrated divergent action on RCC binding and invasion, depending on RCC cell sensitivity to everolimus. Therefore, SFN administration could hold potential for treating RCC patients with established resistance towards everolimus.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | | | - Jochen Rutz
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Saira Justin
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Frederik Roos
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Wael Khoder
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Wolf O Bechstein
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Department of General and Visceral Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Pistollato F, Calderón Iglesias R, Ruiz R, Aparicio S, Crespo J, Dzul Lopez L, Giampieri F, Battino M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett 2017; 411:191-200. [PMID: 29017913 DOI: 10.1016/j.canlet.2017.09.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Among gynaecological cancers, ovarian cancer represents the leading cause of death in women. Current treatment for ovarian cancer entails surgery followed by combined chemotherapy with platinum and taxane, which are associated, particularly cisplatin, with severe side effects. While this treatment approach appears to be initially effective in a high number of patients, nearly 70% of them suffer a relapse within a few months after initial treatment. Therefore, more effective and better-tolerated treatment options are clearly needed. In recent years, several natural compounds (such as curcumin, epigallocatechin 3-gallate (EGCG), resveratrol, sulforaphane and Withaferin-A), characterized by long-term safety and negligible and/or inexistent side effects, have been proposed as possible adjuvants of traditional chemotherapy. Indeed, several in vitro and in vivo studies have shown that phytocompounds can effectively inhibit tumor cell proliferation, stimulate autophagy, induce apoptosis, and specifically target ovarian cancer stem cells (CSCs), which are generally considered to be responsible for tumor recurrence in several types of cancer. Here we review current literature on the role of natural products in ovarian cancer chemoprevention, highlighting their effects particularly on the regulation of inflammation, autophagy, proliferation and apoptosis, chemotherapy resistance, and ovarian CSC growth.
Collapse
Affiliation(s)
- Francesca Pistollato
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | | | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Silvia Aparicio
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Jorge Crespo
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Luis Dzul Lopez
- Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche, Sez. Biochimica, Università Politecnica Delle Marche, Ancona, Italy.
| | - Maurizio Battino
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain; Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche, Sez. Biochimica, Università Politecnica Delle Marche, Ancona, Italy.
| |
Collapse
|
26
|
Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit Rev Food Sci Nutr 2017; 58:1391-1405. [PMID: 28001083 DOI: 10.1080/10408398.2016.1259983] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the past decades, extensive studies have reported the potential chemopreventive activity of sulforaphane, an isothiocyanate derived from glucoraphanin, occurring in large amounts in Brassica genus plants. Sulforaphane was found to be active against several forms of cancer. A growing body of data shows that sulforaphane acts against cancer at different levels, from development to progression, through pleiotropic effects. In this review, we discuss the available experimental and clinical data on the potential therapeutic role of sulforaphane against cancer. Its effects range from the protection of cells from DNA damage to the modulation of the cell cycle via pro-apoptotic, anti-angiogenesis and anti-metastasis activities. At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2. Although data from clinical studies are limited, sulforaphane remains a good candidate in the adjuvant therapy based on natural molecules against several types of cancer.
Collapse
Affiliation(s)
- Maria Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Krystyna Skalicka-Woźniak
- b Department of Pharmacognosy with Medicinal Plants Unit , Medical University of Lublin , Lublin , Poland
| | - Maria Daglia
- c Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Italy
| | - Eduardo Sobarzo-Sánchez
- d Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry , Faculty of Pharmacy, University of Santiago de Compostela , Spain
| | - Seyed Fazel Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
27
|
Juengel E, Euler S, Maxeiner S, Rutz J, Justin S, Roos F, Khoder W, Nelson K, Bechstein WO, Blaheta RA. Sulforaphane as an adjunctive to everolimus counteracts everolimus resistance in renal cancer cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 27:1-7. [PMID: 28314474 DOI: 10.1016/j.phymed.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) inhibitors, everolimus and temsirolimus, have widened therapeutic options to treat renal cell carcinoma (RCC). However, chronic treatment with these inhibitors often induces resistance, leading to therapeutic failure. PURPOSE The natural compound, sulforaphane (SFN), was added to an everolimus based regime in vitro in the hopes of preventing resistance development. METHODS A panel of RCC cell lines (A498, Caki-1, KTCTL-26) was treated with everolimus or SFN or with an everolimus-SFN-combination, either short- (24h) or long-term (8 weeks), and cell growth, proliferation, apoptosis, and cell cycle phases were measured. The cell cycle regulating proteins cdk1, cdk2, cyclin A, cyclin B, akt and raptor (both total and activated) were also evaluated. RESULTS Short-term incubation with everolimus (1nM) or SFN (5µM) significantly reduced RCC cell growth. Additive effects on tumor growth and proliferation were evoked by the SFN-everolimus combination. Long-term everolimus-incubation led to resistance development in Caki-1 cells, evidenced by elevated growth and proliferation, associated with an increased percentage of G2/M (non-synchronized cell model) or S-phase (synchronized cell model) cells. Molecular analysis revealed up-regulation of the cdk1-cyclin B and cdk2-cyclin A axis, along with elevated phosphorylation of the mTOR sub-member, raptor. In contrast, resistance development was not observed with the long-term combination of SFN-everolimus. The combination suppressed Caki-1 growth and proliferation, and was associated with an increase in G0/G1-phase cells, diminished cdk1 and akt (both total and activated), cyclin B and raptor expression. CONCLUSION Adding SFN to an everolimus based RCC treatment regimen in vitro delayed resistance development observed with chronic everolimus monotherapy. Ongoing in vivo studies are necessary to verify the in vitro data.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Stephanie Euler
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Jochen Rutz
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Saira Justin
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Frederik Roos
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Wael Khoder
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Wolf O Bechstein
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany; Department of General and Visceral Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany.
| |
Collapse
|
28
|
Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem Toxicol 2016; 100:90-102. [PMID: 27993529 DOI: 10.1016/j.fct.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Antioxidant-based chemotherapy has been intensely debated. Herein, we show that sulforaphane (SFN) induced mitochondrial biogenesis followed by mitochondrial fusion in a kidney cell line commonly used in nephroprotective models. At the same concentration and exposure time, SFN induced cell death in prostate cancer cells accompanied by mitochondrial biogenesis and fragmentation. Stabilization of the nuclear factor E2-related factor-2 (Nrf2) could be associated with these effects in the tumor cell line. An increase in the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) level and a decrease in the hypoxia-inducible factor-1α (HIF1α) level would suggest a possible metabolic shift. The knockdown in the nuclear respiratory factor-1 (NRF1) attenuated the SFN-induced effect on prostate cancer cells demonstrating that mitochondrial biogenesis plays an important role in cell death for this kind of tumor cells. This evidence supports SFN as a potential antineoplastic agent that could inhibit tumor development and could protect normal tissues by modulating common processes.
Collapse
|
29
|
Tian H, Zhou Y, Yang G, Geng Y, Wu S, Hu Y, Lin K, Wu W. Sulforaphane-cysteine suppresses invasion via downregulation of galectin-1 in human prostate cancer DU145 and PC3 cells. Oncol Rep 2016; 36:1361-8. [PMID: 27430422 DOI: 10.3892/or.2016.4942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022] Open
Abstract
Our previous study showed that sulforaphane (SFN) inhibits invasion in human prostate cancer DU145 cells; however, the underlying mechanisms were not profoundly investigated. In the present study, we found that sulforaphane-cysteine (SFN-Cys), as a metabolite of SFN, inhibits invasion and possesses a novel mechanism in prostate cancer DU145 and PC3 cells. The scratch and Transwell assays showed that SFN-Cys (15 µM) inhibited both migration and invasion, with cell morphological changes, such as cell shrinkage and pseudopodia shortening. The cell proliferation (MTS) assay indicated that cell viability was markedly suppressed with increasing concentrations of SFN‑Cys. Furthermore, the Transwell assay showed that inhibition of SFN‑Cys‑triggered invasion was tightly linked to the sustained extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Western blot analysis revealed that SFN-Cys downregulated galectin-1 protein, an invasion‑related protein, and that the galectin‑1 reduction could be blocked by ERK1/2 inhibitor PD98059 (25 µM). Moreover, immunofluorescence staining showed that the expression level of galectin-1 protein was significantly reduced in the cells treated with SFN‑Cys. Hence, SFN‑Cys‑inhibited invasion resulted from the sustained ERK1/2 phosphorylation and ERK1/2‑triggered galectin-1 downregulation, suggesting that galectin-1 is a new SFN-Cys target inhibiting invasion apart from ERK1/2, in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
30
|
Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B. Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SPRINGERPLUS 2016; 5:235. [PMID: 27026929 PMCID: PMC4771656 DOI: 10.1186/s40064-016-1910-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
In recent studies, sulforaphane (SFN) has been seen to demonstrate antioxidant and anti-tumor activities. In the present study, the viability inhibition effects of SFN in U251MG glioblastoma cells were analyzed by MTS. Morphology changes were observed by microscope. Apoptotic effects of SFN were evaluated by annexin V binding capacity with flow cytometric analysis. Invasion inhibition effects of SFN were tested by the invasion assay. The molecular mechanisms of apoptotic effects and invasion inhibition effects of SFN were detected by western blot and gelatin zymography. The results indicated that SFN has potent apoptotic effects and invasion inhibition effects against U251MG glioblastoma cells. These effects are both dose dependent. Taken together, SFN possessed apoptotic activity on U251MG cells indicated by increased annexin V-binding capacity, Bad, Bax, cytochrome C expression, and decreased Bcl-2 and survivin expressions. SFN inhibited invasion in U251MG cells via upregulation of E-cadherin and downregulation of MMP-2, MMP-9 and Galectin-3.
Collapse
Affiliation(s)
- Zhen Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Li Shang
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | | | - Rong Zou
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Yan Zhan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | | |
Collapse
|
31
|
Lencesova L, Vlcek M, Krizanova O, Hudecova S. Hypoxic conditions increases H₂S-induced ER stress in A2870 cells. Mol Cell Biochem 2016; 414:67-76. [PMID: 26868821 DOI: 10.1007/s11010-016-2659-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
Hypoxia - a state of lower oxygen demand-is responsible for a higher aggressiveness of tumors and therefore a worse prognosis. During hypoxia, several metabolic pathways are re-organized, e.g., energetic metabolism, modulation of pH, and calcium transport. Calcium is an important second messenger that regulates variety of processes in the cell. Thus, aim of this work was to compare H2S modulation of the intracellular calcium transport systems in hypoxia and in cells grown in standard culture conditions. For all experiments, we used ovarian cancer cell line (A2780). H2S is a novel gasotransmitter, known to be involved in a modulation of several calcium transport systems, thus resulting in altered calcium signaling. Two models of hypoxia were used in our study-chemical (induced by dimethyloxallyl glycine) and 2 % O2 hypoxia, both combined with a treatment using a slow H2S donor GYY4137. In hypoxia, we observed rapid changes in cytosolic and reticular calcium levels compared to cells grown in standard culture conditions, and these changes were even more exagerrated when combined with the GYY4137. Changes in a calcium homeostasis result from IP3 receptor´s up-regulation and down-regulation of the SERCA 2, which leads to a development of the endoplasmic reticulum stress. Based on our results, we propose a higher vulnerability of calcium transport systems to H2S regulation under hypoxia.
Collapse
Affiliation(s)
- Lubomira Lencesova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Miroslav Vlcek
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Olga Krizanova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Sona Hudecova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic.
| |
Collapse
|