1
|
Abdelrady YA, Thabet HS, Sayed AM. The future of metronomic chemotherapy: experimental and computational approaches of drug repurposing. Pharmacol Rep 2025; 77:1-20. [PMID: 39432183 DOI: 10.1007/s43440-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Metronomic chemotherapy (MC), long-term continuous administration of anticancer drugs, is gaining attention as an alternative to the traditional maximum tolerated dose (MTD) chemotherapy. By combining MC with other treatments, the therapeutic efficacy is enhanced while minimizing toxicity. MC employs multiple mechanisms, making it a versatile approach against various cancers. However, drug resistance limits the long-term effectiveness of MC, necessitating ongoing development of anticancer drugs. Traditional drug discovery is lengthy and costly due to processes like target protein identification, virtual screening, lead optimization, and safety and efficacy evaluations. Drug repurposing (DR), which screens FDA-approved drugs for new uses, is emerging as a cost-effective alternative. Both experimental and computational methods, such as protein binding assays, in vitro cytotoxicity tests, structure-based screening, and several types of association analyses (Similarity-Based, Network-Based, and Target Gene), along with retrospective clinical analyses, are employed for virtual screening. This review covers the mechanisms of MC, its application in various cancers, DR strategies, examples of repurposed drugs, and the associated challenges and future directions.
Collapse
Affiliation(s)
- Yousef A Abdelrady
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Hayam S Thabet
- Microbiology Department, Faculty of Veterinary Medicine, Assiut University, Asyut, 71526, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
3
|
Banchi M, Cox MC, Bocci G. Metronomic chemotherapy in hematology: Lessons from preclinical and clinical studies to build a solid rationale for future schedules. Cancer Lett 2024; 591:216900. [PMID: 38636896 DOI: 10.1016/j.canlet.2024.216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metronomic chemotherapy (mCHEMO), based on frequent, regular administration of low, but pharmacologically active drug doses, optimizes antitumor efficacy by targeting multiple targets and reducing toxicity of antineoplastic drugs. This minireview will summarize preclinical and clinical studies on cytotoxic drugs given at weekly, daily, or at continuous metronomic schedules alone or in combination with novel targeted agents for hematological malignancies, including lymphoma, multiple myeloma, and leukemia. Most of the preclinical in vitro and in vivo studies have reported a significant benefit of both mCHEMO monotherapy and combinatorial regimens compared with chemotherapy at the maximum tolerated dose. However, the combination of mCHEMO with targeted drugs is still little explored in the hematologic clinical setting. Data obtained from preclinical studies on low dose metronomic chemotherapy in hematological malignancies clearly suggested the possibility to clinically investigate more tolerable and effective strategies for the treatment of patients with advanced hematological malignancies, or at least for those frail and elderly patients, who are not eligible or resistant to standard treatments.
Collapse
Affiliation(s)
- Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Tong Y, Zhang X, Zhou Y. Integrated Analysis of Multi-Omics Data to Establish a Hypoxia-Related Prognostic Model in Osteosarcoma. Evol Bioinform Online 2022; 18:11769343221128537. [PMID: 36325183 PMCID: PMC9618759 DOI: 10.1177/11769343221128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common malignant bone tumor in clinical practice, and currently, the ability to predict prognosis in the diagnosis of OS is limited. There is an urgent need to find new diagnostic methods and treatment strategies for OS. Material and methods: We downloaded the multi-omics data for OS from the TARGET database. Prognosis-associated methylation sites were used to identify clustered subtypes of OS, and OS was classified into 3 subtypes (C1, C2, C3). Survival analysis showed significant differences between the C3 subtype and the other subtypes. Subsequently, differentially expressed genes (DEGs) across subtypes were screened and subjected to pathway enrichment analysis. Results: A total of 249 DEGs were screened from C3 subtype to other subtypes. Metabolic pathway enrichment analysis showed that DEGs were significantly enriched to the hypoxic pathway. Based on univariate and multivariate COX regression analysis, 12 genes from the hypoxia pathway were further screened and used to construct hypoxia-related prognostic model (HRPM). External validation of the HRPM was performed on the GSE21257 dataset. Finally, differences in survival and immune infiltration between high and low risk score groups were compared. Conclusion: In summary, we proposed a hypoxia-associated risk model based on a 12-gene expression signature, which is potentially valuable for prognostic diagnosis of patients with OS.
Collapse
Affiliation(s)
- Ye Tong
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Xiaoqing Zhang
- Department of Laboratory, Bozhou People’s Hospital, Bozhou, Anhui, China
| | - Ye Zhou
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China,Ye Zhou, Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China.
| |
Collapse
|
5
|
Robello M, Salerno S, Barresi E, Orlandi P, Vaglini F, Banchi M, Simorini F, Baglini E, Poggetti V, Taliani S, Da Settimo F, Bocci G. New antiproliferative agents derived from tricyclic 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine scaffold: Synthesis and pharmacological effects. Arch Pharm (Weinheim) 2022; 355:e2200295. [PMID: 35904260 DOI: 10.1002/ardp.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/07/2022]
Abstract
A series of novel 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine (BIT) derivatives were designed and synthesized. In vitro antiproliferative activity was detected toward two human colorectal adenocarcinoma cell lines (CaCo-2 and HT-29) and one human dermal microvascular endothelial cell line (HMVEC-d). The most active compounds, namely 2-4 and 8, were further investigated to clarify the mechanism behind their biological activity. Through immunofluorescence assay, we identified the target of these molecules to be the microtubule cytoskeleton with subsequent formation of dense microtubule accumulation, particularly at the periphery of the cancer cells, as observed in paclitaxel-treated cells. Overall, these results highlight BIT derivatives as robust and feasible candidates deserving to be further developed in the search for novel potent antiproliferative microtubule-targeting agents.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, Bethesda, Maryland, USA
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Paola Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Vaglini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marta Banchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Guido Bocci
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Anevlavis S, Karpathiou G, Ntolios P, Froudarakis ME. Two years progression-free survival under vinorelbine metronomic therapy of a patient with metastatic epithelioid hemangioendothelioma. Monaldi Arch Chest Dis 2022; 92. [DOI: 10.4081/monaldi.2022.1798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a very rare vascular tumor, originating from endothelial cells. The etiology of EHE is unknown, yet at the molecular level, different angiogenic stimulators may act as promoters of endothelial cell proliferation. The tumor affects more commonly the lung, the liver and the bones but it can affect any other organ. Due to its heterogeneous presentation and its rarity it is often misdiagnosed. No treatment is proved to be efficient in metastatic EHE and the median survival of patients with metastatic pleural disease is generally poor, less than one year. we report a case of a 57-year-old female with multiple metastatic EHE including pleural, diagnosed by medical thoracoscopy, with a progression-free survival of 24 months with oral vinorelbine as maintenance therapy after combination of cisplatin-vinorelbine. We believe that this therapy might be of value to test in this patient population as it has never been tested before.
Collapse
|
7
|
Metronomic chemotherapy regimens and targeted therapies in non-Hodgkin lymphoma: The best of two worlds. Cancer Lett 2022; 524:144-150. [PMID: 34673128 DOI: 10.1016/j.canlet.2021.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022]
Abstract
Novel drugs are rapidly moving forward the treatment-paradigm of non-Hodgkin-lymphomas (NHLs). Notwithstanding, especially in aggressive subtypes, chemotherapy remains the pillar of treatment. Indeed, the combination of highly effective Maximum-Tolerated-Dose Chemotherapy (MTD-CHEMO) + "novel drugs", has so far, fallen short from expectations, often because it caused excessive toxicity. Metronomic chemotherapy (mCHEMO), which is the frequent, long-term administration of low dose cytotoxic drugs, may allow more effective and tolerable combinations. mCHEMO pharmacodynamics, has been described as pleiotropic. In fact, it may have different cellular and molecular targets, when drugs or their schedules are modified. Although mCHEMO has been little explored in NHLs, pre-clinical studies - in lymphoma models - which addressed the activity of mCHEMO in combination with novel drugs, have shown very promising results. These included inhibitors of histone deacetylase, mTOR and PI3K/mTOR, as well as the immune checkpoint inhibitor anti-PD-L1. Moreover, a few impressive reports have recently shown all-oral mCHEMO schedules, with or without rituximab, can effectively shrink both B and T-cell aggressive NHLs. Indeed, these regimens allowed elderly-frail patients to achieve sustained remission, while toxicity proved manageable. In our opinion, all-oral mCHEMO, is an active, easy-to start, well-tolerated, and inexpensive therapeutic approach, which deserves further investigation. Most importantly, mCHEMO, holds promise to empower the activity of novel targeted therapies, without causing excessive toxicity.
Collapse
|
8
|
Zhu A, Yuan P, Hu N, Li M, Wang W, Wang X, Yue J, Wang J, Luo Y, Ma F, Zhang P, Li Q, Xu B, Cao S, Lippi G, Naito Y, Osman MA, Marta GN, Franceschini G, Orlandi A. Phase II study of apatinib in combination with oral vinorelbine in heavily pretreated HER2-negative metastatic breast cancer and clinical implications of monitoring ctDNA. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0418. [PMID: 34037346 PMCID: PMC8330536 DOI: 10.20892/j.issn.2095-3941.2020.0418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Apatinib is an oral TKI targeting VEGFR-2. Single-agent apatinib treatment has been shown to produce an objective response in patients with pretreated mBC. Oral vinorelbine also holds promise as a treatment of choice in patients with mBC. This study aimed to investigate the efficacy and safety of the oral vinorelbine-apatinib combination in patients with pretreated mBC. In addition, we detected gene variants in ctDNA to explore the therapeutic implications. METHODS This study enrolled patients with HER2-negative mBC who were pretreated with anthracycline/taxanes. Patients were treated with apatinib at 500 mg/425 mg daily plus oral vinorelbine 60 mg/m2 on days 1, 8, and 15 of every cycle (3 weeks). The primary endpoint was PFS. The secondary endpoints were ORR, CBR, OS, and safety. Patients eligible for ctDNA detection were evaluated before and during treatment. RESULTS Forty patients were enrolled. The median PFS was 5.2 months (95% CI, 3.4-7.0 months), and the median OS was 17.4 months (95% CI, 8.0-27.0 months). The ORR was 17.1% (6/35), and the CBR was 45.7% (16/35). The most common AEs included gastrointestinal reaction, myelosuppression, and hypertension. In 20 patients, ctDNA was detected at baseline and during treatment. A significant difference was found in PFS for undetected vs. detected baseline ctDNA (13.9 months vs. 3.6 months, P = 0.018). CONCLUSIONS All-oral therapy with apatinib plus vinorelbine displayed objective efficacy in patients with heavily pretreated HER2-negative mBC, with acceptable and manageable toxicity profiles. Patients with no gene variant detected and lower variant allele frequencies in ctDNA at baseline showed longer PFS.
Collapse
Affiliation(s)
- Anjie Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingzhou Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenmiao Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shanbo Cao
- AcornMed Biotechnology Co., Ltd., Beijing 101102, China
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University Hospital of Verona, Verona 37100, Italy
| | - Yoichi Naito
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Mohammed A. Osman
- Clinical Oncology, General Organization for Teaching Hospitals, Cairo 11435, Egypt
| | - Gustavo N. Marta
- Department of Radiation Oncology, Hospital Sírio-Libanês, Sao Paulo 01308-050, Brazil
| | - Gianluca Franceschini
- Multidisciplinary Breast Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00176, Italy
| | - Armando Orlandi
- Unit of Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma 00176, Italy
| |
Collapse
|
9
|
Orlandi P, Banchi M, Alì G, Di Desidero T, Fini E, Fontanini G, Bocci G. Active metronomic vinorelbine schedules decrease plasma interleukin-2 levels in mice with Lewis lung carcinoma. J Chemother 2020; 33:198-202. [PMID: 32930084 DOI: 10.1080/1120009x.2020.1819069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of our study was to investigate the effects of metronomic vinorelbine (mVNR) in a tumor model of Lewis Lung (LL) cancer in immunocompetent C57BL/6 mice, looking at the plasma levels of interleukin-2 (IL-2) and interleukin-8 (IL-8). mVNR caused a concentration-dependent antiproliferative effect in vitro on LL/2 cells. The in vivo experiment showed the significant antitumor effects of mVNR at the dose of 4 mg/Kg and 5 mg/Kg, 3 times/week, and the significant dose-dependent decrease of IL-2 concentrations in plasma samples. Conversely, such an effect was not observed for IL-8. A significant decrease in microvessel density was also found at both the active mVNR doses. In conclusion, our study confirmed the activity of mVNR in an immunocompetent model of lung carcinoma and suggest multiple mechanisms of action, including the modulation of IL-2 levels.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa
| | - Teresa Di Desidero
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Elisabetta Fini
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| |
Collapse
|
10
|
Huang H, Zhang C, Wang X, Shao J, Chen C, Li H, Ju C, He J, Gu H, Xia D. Overcoming Hypoxia-Restrained Radiotherapy Using an Erythrocyte-Inspired and Glucose-Activatable Platform. NANO LETTERS 2020; 20:4211-4219. [PMID: 32352796 DOI: 10.1021/acs.nanolett.0c00650] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiotherapy (RT) as one of the most powerful cancer treatment strategies has been greatly restricted by tumor hypoxia. A mounting effort has been devoted to develop oxygen delivery systems for boosting the RT effect. Unluckily, those systems only supplied modest oxygen, which could not afford more than once and long-time RT. Herein, we describe the development of a glucose-regulated drug release platform, allowing for a long-term tumor normoxic microenvironment and repeated RT for a long time. The repeated cycles resulted in sustained high Endostar plasma levels, which dramatically normalized the tumor vasculature and chronically reversed tumor hypoxia. Taking advantage of the inexhaustible supply of oxygen, Endo@GOx-ER enabled RT achieved an impressive cancer treatment output. To the best of our knowledge, our strategy is the initial attempt to overcome tumor-hypoxia-limited RT through the normalization of tumor vasculature by using an erythrocyte-inspired and glucose-activatable platform and it visually casts a light on the clinical development.
Collapse
Affiliation(s)
- Hao Huang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chao Zhang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiaolin Wang
- Nantong Tumor Hospital, Nantong, Jiangsu 226362, P.R. China
| | - Jinsong Shao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Haoming Li
- Medical School of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chunmei Ju
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
11
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez JM, Martínez-Campa C, Mitola S, Cos S. Usefulness of melatonin as complementary to chemotherapeutic agents at different stages of the angiogenic process. Sci Rep 2020; 10:4790. [PMID: 32179814 PMCID: PMC7076026 DOI: 10.1038/s41598-020-61622-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutics are sometimes administered with drugs, like antiangiogenic compounds, to increase their effectiveness. Melatonin exerts antitumoral actions through antiangiogenic actions. We studied if melatonin regulates the response of HUVECs to chemotherapeutics (docetaxel and vinorelbine). The inhibition that these agents exert on some of the processes involved in angiogenesis, such as, cell proliferation, migratory capacity or vessel formation, was enhanced by melatonin. Regarding to estrogen biosynthesis, melatonin impeded the negative effect of vinorelbine, by decreasing the activity and expression of aromatase and sulfatase. Docetaxel and vinorelbine increased the expression of VEGF-A, VEGF-B, VEGF-C, VEGFR-1, VEGFR-3, ANG1 and/or ANG-2 and melatonin inhibited these actions. Besides, melatonin prevented the positive actions that docetaxel exerts on the expression of other factors related to angiogenesis like JAG1, ANPEP, IGF-1, CXCL6, AKT1, ERK1, ERK2, MMP14 and NOS3 and neutralized the stimulating actions of vinorelbine on the expression of FIGF, FGFR3, CXCL6, CCL2, ERK1, ERK2, AKT1, NOS3 and MMP14. In CAM assay melatonin inhibited new vascularization in combination with chemotherapeutics. Melatonin further enhanced the chemotherapeutics-induced inhibition of p-AKT and p-ERK and neutralized the chemotherapeutics-caused stimulatory effect on HUVECs permeability by modifying the distribution of VE cadherin. Our results confirm that melatonin blocks proangiogenic and potentiates antiangiogenic effects induced by docetaxel and vinorelbine enhancing their antitumor effectiveness.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Noemi Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Javier Menéndez Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Laboratory for Preventive and Personalized Medicine, University of Brescia, 25123, Brescia, Italy
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| |
Collapse
|
12
|
Anti-Angiogenic Effect of Orally Available Pemetrexed for Metronomic Chemotherapy. Pharmaceutics 2019; 11:pharmaceutics11070332. [PMID: 31337061 PMCID: PMC6680992 DOI: 10.3390/pharmaceutics11070332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Metronomic chemotherapy (MCT) is defined as the frequent administration of low-dose chemotherapeutics, without long drug-free periods, with the exertion of antitumor activity exclusively through anti-angiogenic mechanisms. In this study, we have developed an orally available formulation of pemetrexed (PMX) for MCT. PMX was first complexed ionically with Nα-deoxycholyl-l-lysyl-methylester (DCK) as the permeation enhancer. This was followed by dispersion with poloxamer 188 and Labrasol to form the solid oral formulation of PMX (PMX/DCK-OP). PMX/DCK-OP exhibited a 10.6-fold increase in permeability across a Caco-2 cell monolayer compared to PMX alone. This resulted in a 70-fold increase in the oral bioavailability of PMX/DCK-OP in mice over oral PMX alone. In the A549 xenograft model, tumor volume was reduced by 51.1% in the PMX/DCK-OP treated group compared to only 32.8% in the maximum tolerated dose (MTD)-treated group. Furthermore, PMX/DCK-OP exhibited a significant anti-angiogenic effect on the A549 xenograft mice when compared to the MTD-treated group, as indicated by microvessel density quantification for CD-31. In addition, PMX/DCK-OP enhanced the release of an endogenous angiogenesis inhibitor, thrombospondin-1 (TSP-1), into both the blood circulation and the tumor microenvironment. Therefore, due to its oral route of administration, PMX/DCK-OP appears to be a better alternative to the conventional treatment of PMX.
Collapse
|
13
|
Tagliamento M, Genova C, Rossi G, Coco S, Rijavec E, Dal Bello MG, Boccardo S, Grossi F, Alama A. Microtubule-targeting agents in the treatment of non-small cell lung cancer: insights on new combination strategies and investigational compounds. Expert Opin Investig Drugs 2019; 28:513-523. [DOI: 10.1080/13543784.2019.1627326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Giovanni Rossi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Erika Rijavec
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano,
Italy
| | | | - Simona Boccardo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Francesco Grossi
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano,
Italy
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| |
Collapse
|
14
|
The metronomic all-oral DEVEC is an effective schedule in elderly patients with diffuse large b-cell lymphoma. Invest New Drugs 2019; 37:548-558. [PMID: 31028663 DOI: 10.1007/s10637-019-00769-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Metronomic-chemotherapy (M-CHT) has been rarely assessed in non-Hodgkin-lymphoma (NHL). Therefore, in 2011 we started experimenting a new all-oral M-CHT schedule termed DEVEC (Deltacortene®, etoposide, vinorelbine, cyclophosphamide, +/-Rituximab) in diffuse-large-B-cell lymphoma (DLBCL) patients. Methods Patients with stage Ib-IV were enrolled as follows: 1) treatment-naïve, frail ≥65y, or unfit ≥85y; and 2) relapsed/refractory (R/R) ≥55y. Data were prospectively collected from six Italian centres and compared for efficacy to two reference groups, treated with established iv Rituximab-CHT in 1st and 2nd line respectively. Results from April-2011 to March-2018, 17/51(33%) naïve, 21/51(41%) refractory and 13/51(25.5%) relapsed patients started DEVEC; 39/51(76.5%) were de-novo DLBCL; 10/51(19.6%) transformed-DLBCL and 2/51(3.9%) unclassifiable-DLBCL/classical-Hodgkin-lymphoma. The median age was 85y (range=77-93) and 78y (range=57-91) in naïve and R/R respectively and overall the DEVEC patients had very poor features compared to the reference. The rate of grade≥3 haematological-AEs was 43%(95CI=29-58%): G3-neutropenia was the most frequent; grade≥3 extra-haematological-AEs was 13.7% (95%CI=5.4-25.9%), the most frequent was infection. One-year OS and PFS were 67% and 61% for naive, 60% and 50% for reference-naïve respectively; Cox proportional hazard ratio (Cox-PH-ratio) for OS and PFS were 0.69 (95%CI=0.27-1.76;p=.441) and 0.68 (95%CI=0.28-1.62;p=.381) respectively. One-year OS and PFS were 48% and 39% in the R/R, 36% and 17% in the reference-R/R respectively; Cox-PH-ratio for OS and PFS, were 0.76 (95%CI=0.42-1.40; p=.386) and 0.48 (95%CI=0.28-0.82; p=.007) respectively. Conclusion The favourable activity of DEVEC compared to a real-life series and the convenience of an oral administration, may possibly lay the groundwork for a paradigm-shift in the treatment of elderly DLBCL.
Collapse
|
15
|
Saravanakumar K, Chelliah R, Hu X, Oh DH, Kathiresan K, Wang MH. Antioxidant, Anti-Lung Cancer, and Anti-Bacterial Activities of Toxicodendron vernicifluum. Biomolecules 2019; 9:E127. [PMID: 30934938 PMCID: PMC6523688 DOI: 10.3390/biom9040127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
This work tested antioxidant, anti-lung cancer, and antibacterial activities by in vitro, in vivo, and computational experiments for the metabolites extracted from the bark, seed, and stem of Toxicodendron vernicifluum. The results showed that all the extracts significantly scavenged 1,2-diphenyl-1-picrylhydrazyl (DPPH) in a dose-dependent manner. But, the total phenol content (TPC) ranged from 2.12 to 89.25% and total flavonoids content (TFC) ranged from 1.02 to 15.62% in the extracts. The methanolic bark extract (MBE) exhibited higher DPPH scavenging activity than the other extracts, probably due to the higher content of the TPC and TFC present in it. Among the extracts, only the MBE showed anti-lung cancer activity at an acceptable level with a therapeutic index value (22.26) against human lung carcinoma. This was due to the cancer cell death in A549 induced by MBE through reactive oxygen species (ROS) generation, apoptosis, and cell arrest in G1 phase and inhibition of anti-pro-apoptotic protein survivin. Among the extracts, MBE showed significantly higher antibacterial activity as evident through the higher zone of inhibition 13 ± 0.5 mm against methycilin resistant strain of Staphylococcus aureus (MRSA), Salmonila enteria subp. enterica, and P. aeruginosa, 11 ± 0.3 mm against E. coli and 10 ± 0.2 mm against B. cereus. The MBE also showed an excellent antibacterial activity with lower minimal inhibitory concentration (MIC). Particularly, the MBE showed more significant antibacterial activity in MRSA. The in vivo antibacterial activity of the MBE was further tested in C. elegans model. The treatment of the MRSA induced cell disruption, damage and increased mortality of C. elegans as compared to the untreated and MBE treated C. elegans with normal OP50 diet. Moreover, the MBE treatment enhanced the survival of the MRSA infected C. elegans. The compounds, such as 2,3,3-trimethyl-Octane and benzoic from the MBE, metabolized the novel bacterial topoisomerases inhibitor (NBTI) and MRSA related protein (PBP2a). Overall the T. vernicifluum is potentially bioactive as evident by antioxidant, anti-lung cancer, and antibacterial assays. Further studies were targeted on the purification of the novel compounds for the clinical evaluation.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 200-701, Korea.
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 200-701, Korea.
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
16
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
17
|
D'Ascanio M, Pezzuto A, Fiorentino C, Sposato B, Bruno P, Grieco A, Mancini R, Ricci A. Metronomic Chemotherapy with Vinorelbine Produces Clinical Benefit and Low Toxicity in Frail Elderly Patients Affected by Advanced Non-Small Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6278403. [PMID: 30225260 PMCID: PMC6129793 DOI: 10.1155/2018/6278403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of death worldwide. The treatment choice for advanced stage of lung cancer may depend on histotype, performance status (PS), age, and comorbidities. In the present study, we focused on the effect of metronomic vinorelbine treatment in elderly patients with advanced unresectable non-small cell lung cancer (NSCLC). METHODS From January 2016 to December 2016, 44 patients affected by non-small cell lung cancer referred to our oncology day hospital were progressively analyzed. The patients were treated with oral vinorelbine 30 mg x 3/wk or 40 mg x 3/wk meaning one day on and one day off. The patients were older than 60, stage IIIB or IV, ECOG PS ≥ 1, and have at least one important comorbidity (renal, hepatic, or cardiovascular disease). The schedule was based on ECOG-PS and comorbidities. The primary endpoint was progression-free survival (PFS). PFS was used to compare patients based on different scheduled dosage (30 or 40 mg x3/weekly) and age (more or less than 75 years old) as exploratory analysis. We also evaluated as secondary endpoint toxicity according to Common Toxicity Criteria Version 2.0. RESULTS Vinorelbine showed a good safety profile at different doses taken orally and was effective in controlling cancer progression. The median overall survival (OS) was 12 months. The disease control rate (DCR) achieved 63%. The median PFS was 9 months. A significant difference in PFS was detected comparing patients aged below with those over 75, and the HR value was 0.72 (p<0.05). Not significant was the difference between groups with different schedules. CONCLUSIONS This study confirmed the safety profile of metronomic vinorelbine and its applicability for patients unfit for standard chemotherapies and adds the possibility of considering this type of schedule not only for very elderly patients.
Collapse
Affiliation(s)
- Michela D'Ascanio
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| | - Aldo Pezzuto
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| | - Chiara Fiorentino
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| | | | - Pierdonato Bruno
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| | - Alessio Grieco
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| | - Rita Mancini
- Sapienza University Department of Molecular and Clinical Medicine, Italy
| | - Alberto Ricci
- UOC Pneumologia, Hospital Sant'Andrea “Università Sapienza”, 00189 Rome, Italy
| |
Collapse
|
18
|
Cazzaniga ME, Munzone E, Montagna E, Pappagallo G. Treatment of advanced breast cancer with a metronomic schedule of oral vinorelbine: what is the opinion of Italian oncologists? Expert Rev Anticancer Ther 2018; 18:805-814. [PMID: 29902087 DOI: 10.1080/14737140.2018.1489244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this study was to record the opinions of Italian oncologists about the use of oral vinorelbine administered metronomically in patients with advanced breast cancer. METHODS A series of meetings were held throughout Italy, and participants were asked how much they agreed with each of the several statements. RESULTS The majority of oncologists agreed that the concept of the minimum biologically effective dose should be used for drugs administered metronomically. Over 50% agreed that metronomic vinorelbine is an option in first-line chemotherapy for patients with advanced breast cancer, including those with a terminal illness and the elderly, as well as in young and fit patients. Just over one-third of experts agreed that a combination of two chemotherapy agents instead of one is not desirable in metastatic breast cancer because of increased toxicity. Most experts agreed that the main aim of a first-line therapy is to control the disease over time and to preserve quality of life. CONCLUSION Metronomically administered oral vinorelbine, either as monotherapy or in combination with other drugs, is effective in the long-term treatment of patients with advanced breast cancer. The clinical profiles of patients should be carefully considered to determine the appropriate treatment strategy.
Collapse
Affiliation(s)
- Marina E Cazzaniga
- a Department of Medical Oncology & Phase 1 Research Centre ASST-Monza , Ospedale San Gerardo , Monza , Italy
| | - Elisabetta Munzone
- b Division of Medical Senology , European Institute of Oncology , Milan , Italy
| | - Emilia Montagna
- b Division of Medical Senology , European Institute of Oncology , Milan , Italy
| | - Giovanni Pappagallo
- c Epidemiology & Clinical Trials Office , General Hospital , Mirano ( VE ), Italy
| |
Collapse
|
19
|
Krajnak S, Battista M, Brenner W, Almstedt K, Elger T, Heimes AS, Hasenburg A, Schmidt M. Explorative Analysis of Low-Dose Metronomic Chemotherapy with Cyclophosphamide and Methotrexate in a Cohort of Metastatic Breast Cancer Patients. Breast Care (Basel) 2018; 13:272-276. [PMID: 30319329 DOI: 10.1159/000487629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Low-dose metronomic chemotherapy (LDMC) is increasingly used in metastatic breast cancer (MBC). In this retrospective analysis, we examined the therapeutic effects and side effects of LDMC in a cohort of MBC patients. Methods Patients with MBC were included when LDMC with oral cyclophosphamide (CTX) and methotrexate (MTX) was administered between 2009 and 2015. The primary endpoint was disease control rate (DCR) ≥ 24 weeks after the start of LDMC. Secondary endpoints were duration of progression-free survival (PFS), rates of discontinuation due to side effects, and DCR with regard to subgroups. Results Retrospective data of 35 patients were available for this analysis. 31% patients achieved DCR. The median PFS was 12 weeks. 9% of patients discontinued LDMC due to adverse events. DCR was 37% in the first 2 lines and 25% in further lines of therapy. 22% of patients with multiple metastases and 35% with ≤2 different metastatic sites achieved DCR. DCR was achieved in 33% of hormone receptor(HR)-positive patients and 27% of HR-negative patients. Conclusion The DCR of 31% is in line with the results of previous phase II studies. LDMC was well tolerated. Subgroup analysis was not able to identify a group in which LDMC was more efficient.
Collapse
Affiliation(s)
- Slavomir Krajnak
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Marco Battista
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Katrin Almstedt
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Tania Elger
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Anne-Sophie Heimes
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
20
|
Wu JS, Mu LM, Bu YZ, Liu L, Yan Y, Hu YJ, Bai J, Zhang JY, Lu W, Lu WL. C-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma. Oncotarget 2018; 8:40906-40921. [PMID: 28402948 PMCID: PMC5522305 DOI: 10.18632/oncotarget.16641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.
Collapse
Affiliation(s)
- Jia-Shuan Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Min Mu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Zi Bu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Jie Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Ying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiyue Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Orlandi P, Di Desidero T, Salvia G, Muscatello B, Francia G, Bocci G. Metronomic vinorelbine is directly active on Non Small Cell Lung Cancer cells and sensitizes the EGFR L858R/T790M cells to reversible EGFR tyrosine kinase inhibitors. Biochem Pharmacol 2018; 152:327-337. [PMID: 29660315 DOI: 10.1016/j.bcp.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022]
Abstract
Metronomic vinorelbine (mVNR) has been described primarily as an antiangiogenic therapy, and no direct effects of mVNR on Non Small Cell Lung Cancer (NSCLC) cells has yet been demonstrated. The aims of this study were i) to establish the direct activity of mVNR on NSCLC cells either EGFR wt or EGFRL858R/T790M, and ii) to quantify the synergism of the combination with reversible EGFR tyrosine kinase inhibitors (TKIs), investigating the underlying mechanism of action. Proliferation assays were performed on A-549 (wt EGFRhigh), H-292 (EGFR-wt), H-358 (EGFR-wt), H-1975 (EGFRL858R/T790M) NSCLC cell lines exposed to mVNR, its active metabolite deacetyl-VNR (D-VNR), gefitinib and erlotinib for 144 h treatments. The synergism between mVNR and EGFR TKIs was determined by the combination index (CI) in EGFR-wt and H-1975 NSCLC cells. Cyclin-D1 and ABCG2 genes expression and protein levels were measured by RT-PCR and ELISA assays, as well as the phosphorylation of ERK1/2 and Akt. Intracellular concentrations of EGFR TKIs and VNR were investigated with a mass spectrometry system. mVNR, and its active metabolite D-VNR, were extremely active on NSCLC cells, in particular on H-1975 (IC50 = 13.56 ± 2.77 pM), resistant to TKIs. mVNR inhibited the phosphorylation of ERK1/2 and Akt and significantly decreased the expression of both cyclin-D1 and ABCG2 m-RNA and protein. The simultaneous combination of VNR and reversible EGFR TKIs showed a strong synergism on EGFR-wt NSCLC cells and on H-1975 cells (e.g. CI = 0.501 for 50% of affected cells), increasing the intracellular concentrations of EGFR TKIs (e.g. +50.5% vs. gefitinib alone). In conclusions, mVNR has direct effects on NSCLC cells and sensitizes resistant cells to EGFR TKIs, increasing their intracellular concentrations.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Teresa Di Desidero
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Giada Salvia
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Beatrice Muscatello
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
22
|
Ramu A, Kathiresan S, Ramadoss H, Nallu A, Kaliyan R, Azamuthu T. Gramine attenuates EGFR-mediated inflammation and cell proliferation in oral carcinogenesis via regulation of NF-κB and STAT3 signaling. Biomed Pharmacother 2018; 98:523-530. [PMID: 29287200 DOI: 10.1016/j.biopha.2017.12.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
|
23
|
Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB, Faivre-Finn C. Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome. J Natl Cancer Inst 2018; 110:4096546. [PMID: 28922791 DOI: 10.1093/jnci/djx160] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Oxygen deprivation (hypoxia) in non-small cell lung cancer (NSCLC) is an important factor in treatment resistance and poor survival. Hypoxia is an attractive therapeutic target, particularly in the context of radiotherapy, which is delivered to more than half of NSCLC patients. However, NSCLC hypoxia-targeted therapy trials have not yet translated into patient benefit. Recently, early termination of promising evofosfamide and tarloxotinib bromide studies due to futility highlighted the need for a paradigm shift in our approach to avoid disappointments in future trials. Radiotherapy dose painting strategies based on hypoxia imaging require careful refinement prior to clinical investigation. This review will summarize the role of hypoxia, highlight the potential of hypoxia as a therapeutic target, and outline past and ongoing hypoxia-targeted therapy trials in NSCLC. Evidence supporting radiotherapy dose painting based on hypoxia imaging will be critically appraised. Carefully selected hypoxia biomarkers suitable for integration within future NSCLC hypoxia-targeted therapy trials will be examined. Research gaps will be identified to guide future investigation. Although this review will focus on NSCLC hypoxia, more general discussions (eg, obstacles of hypoxia biomarker research and developing a framework for future hypoxia trials) are applicable to other tumor sites.
Collapse
Affiliation(s)
- Ahmed Salem
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marie-Claude Asselin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bart Reymen
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Alan Jackson
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Philippe Lambin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Catharine M L West
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - James P B O'Connor
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Corinne Faivre-Finn
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
24
|
Ramu A, Kathiresan S, Ali Ahmed B. Gramine inhibits angiogenesis and induces apoptosis via modulation of TGF-β signalling in 7,12 dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 33:69-76. [PMID: 28887922 DOI: 10.1016/j.phymed.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) and its receptors are considered as a novel target in cancer chemotherapy. Gramine, an indole alkaloid, possesses various pharmacological properties including antiproliferative and anticancer. However, the anti-angiogenic property remains unexplored. PURPOSE The present study was designed to evaluate the anti-angiogenic and apoptosis induction properties of gramine through inhibiting TGF-β on DMBA induced oral squamous cell carcinoma (OSCC) in the hamster buccal pouch (HBP). METHODS The effects of gramine on TGF-β signalling in DMBA induced carcinogenic events such as angiogenesis and apoptosis were analysed by studying the mRNA expression using RT-PCR, protein expression by western blot and histopathological analysis using haematoxylin and eosin (H & E) staining. RESULTS Gramine significantly inhibited phosphorylation and nuclear translocation of Smad2 and Smad4 by blocking activity of the TGFβ-RII, RI and activation of inhibitory Smad7. Gramine inhibited angiogenic markers such as MMP-2, MMP-9, HIF-1α, VEGF, and VEGF-R2 as well as increased TIMP-2 expression. Furthermore, gramine induced apoptosis in DMBA induced tumour bearing animals by up regulating the pro apoptotic proteins Bax, cytochrome C, apaf-1, caspase-9 caspase-3 and PARP. CONCLUSION In this study, we clearly demonstrated that gramine treatment diminishes angiogenesis and induces apoptosis in hamster buccal pouch (HBP) carcinogenesis by modulating TGF-β signals.
Collapse
Affiliation(s)
- Arunkumar Ramu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India.
| | - Bakrudeen Ali Ahmed
- Faculty of Applied Science, Ton Duc Thang University, Ho Chi Minh, Vietnam; University of Malaya, Institute of Biological Sciences, Faculty of Science, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Resistance to metronomic chemotherapy and ways to overcome it. Cancer Lett 2017; 400:311-318. [PMID: 28259819 DOI: 10.1016/j.canlet.2017.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Therapeutic resistance is amongst the major determinants of cancer mortality. Contrary to initial expectations, antivascular therapies are equally prone to inherent or acquired resistance as other cancer treatment modalities. However, studies into resistance to vascular endothelial growth factor pathway inhibitors revealed distinct mechanisms of resistance compared to conventional cytotoxic therapy. While some of these novel mechanisms of resistance also appear to be functional regarding metronomic chemotherapy, herein we summarize available evidence for mechanisms of resistance specifically described in the context of metronomic chemotherapy. Numerous preclinically identified molecular targets and pathways represent promising avenues to overcome resistance and enhance the benefits achieved with metronomic chemotherapy eventually. However, there are considerable challenges to clinically translate the preclinical findings.
Collapse
|
26
|
Biziota E, Mavroeidis L, Hatzimichael E, Pappas P. Metronomic chemotherapy: A potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation. Cancer Lett 2016; 400:243-251. [PMID: 28017892 DOI: 10.1016/j.canlet.2016.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Metronomic chemotherapy is a low dosing treatment strategy that attracts growing scientific and clinical interest. It refers to dense and uninterrupted administration of low doses of chemotherapeutic agents (without prolonged drug free intervals) over extended periods of time. Cancer chemotherapy is conventionally given in cycles of maximum tolerated doses (MTD) with the aim of inducing maximum cancer cell apoptosis. In contrast, the primary target of metronomic chemotherapy is the tumor's neovasculature. This is relevant to the emerging concept that tumors exist in a complex microenvironment of cancer cells, stromal cells and supporting vessels. In addition to its anti-angiogenetic properties, metronomic chemotherapy halts tumor growth by activating anti-tumor immunity, thus decreasing the acquired resistance to conventional chemotherapy. Herein, we present a review of the literature that provides a scientific basis for the merits of chemotherapy when administered on a metronomic schedule.
Collapse
Affiliation(s)
- Eirini Biziota
- Department of Medical Oncology, University Hospital of Evros, Alexandroupolis, 68 100, Greece.
| | - Leonidas Mavroeidis
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| | | | - Periklis Pappas
- Department of Pharmacology, Faculty of Medicine, School of Life Sciences, University of Ioannina, Ioannina, 451 10, Greece.
| |
Collapse
|
27
|
Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest New Drugs 2016; 34:760-770. [DOI: 10.1007/s10637-016-0385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/04/2023]
|
28
|
Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 2016; 13:659-673. [DOI: 10.1038/nrclinonc.2016.64] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Cazzaniga ME, Camerini A, Addeo R, Nolè F, Munzone E, Collovà E, Del Conte A, Mencoboni M, Papaldo P, Pasini F, Saracchini S, Bocci G. Metronomic oral vinorelbine in advanced breast cancer and non-small-cell lung cancer: current status and future development. Future Oncol 2015; 12:373-87. [PMID: 26584409 DOI: 10.2217/fon.15.306] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy (mCT), a frequent administration of low-dose chemotherapy, allows prolonged treatment duration and minimizes the toxicity of standard-dose chemotherapy. mCT has multiple actions against cancer cells including inhibition of angiogenesis and modulation of the immune system. A number of studies lend support to the clinical efficacy of mCT in advanced breast cancer and non-small-cell lung cancer. However, further evidence is necessary to describe the optimal use of mCT and to identify suitable patients. Oral vinorelbine has emerged as a promising metronomic treatment in patients with metastatic breast cancer and non-small-cell lung cancer and is the only orally available microtubule-targeting agent. This paper reviews current evidence on metronomic oral vinorelbine, discusses its management and defines a suitable patient profile on the basis of a workshop of Italian experts.
Collapse
Affiliation(s)
- Marina E Cazzaniga
- Department of Oncology, AO San Gerardo, via Pergolesi 33, 20052 Monza (MB), Italy
| | - Andrea Camerini
- Department of Medical Oncology, Versilia Hospital & Istituto Toscano Tumori, 55041 Lido di Camaiore (LU), Italy
| | - Raffaele Addeo
- Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore (NA), Italy
| | - Franco Nolè
- Division of Urogenital & Head & Neck Cancer, European Institute of Oncology, 20141 Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, 20141 Milan, Italy
| | - Elena Collovà
- Oncology Unit, AO Ospedale Civile di Legnano, Legnano, 20025 Legnano (MI), Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Manlio Mencoboni
- Oncology Unit, Villa Scassi Hospital, ASL3-Genovese, 16149 Genoa, Italy
| | - Paola Papaldo
- Department of Medical Oncology, Istituto Nazionale Tumori Regina Elena, 00144 Rome, Italy
| | - Felice Pasini
- Department of Medical Oncology, Rovigo Hospital, ULSS18, 45100 Rovigo, Italy
| | - Silvana Saracchini
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Guido Bocci
- Department of Clinical & Experimental Medicine, Division of Pharmacology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|