1
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
2
|
席 玉. 制备人脐静脉内皮细胞和人肺腺癌细胞融合细胞的新方法. Technol Cancer Res Treat 2021; 20:15330338211034260. [PMID: 34318732 PMCID: PMC8323407 DOI: 10.1177/15330338211034260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: Human umbilical endothelial cells (HUVECs) have been proved to be
an effective whole-cell vaccine inhibiting tumor angiogenesis.
In this study, we fused HUVECs with human lung adenocarcinoma
cells A549 s, aiming at preparing lung cancer vaccine to achieve
dual effects of anti-tumor angiogenesis and specific immunity to
tumor cells. Methods: A549 cells were induced by ethyl methane sulfonate (EMS) and
8-azaguanine (8-AG) to get hypoxanthine guanine phosphoribosyl
transferase (HGPRT) auxotrophic A549 cells. Then Fused HGPRT
auxotrophic A549 cells with primary HUVEC cells by combining
electrofusion with polyethylene glycol (PEG). Afterward the
fusion cells were screened by HAT and HT selective medium and
sorted by flow cell sorter to obtain high-purity HUVEC-A549
cells. Finally, HUVEC-A549 cells were identified by karyotype
analysis and western blotting. Results: The fusion efficiency of HUVEC-A549 cells prepared by combining
electrofusion with polyethylene glycol (PEG) was significantly
higher than that of electrofusion and PEG (43.0% vs 17.60% vs
2.71%, P < 0.05). After screened by HAT and
HT selective medium and sorted by flow cell sorter, the
proportion of HUVEC-A549 cells can count for 71.2% ± 3.2%. The
mode of chromosomes in HUVEC-A549 cells was 68, and the
chromosome was triploid. VE-cadherin and platelet endothelial
cell adhesion molecule-1 (CD31) were highly expressed in HUVECs
and HUVEC-A549 cells, but not in A549 cells. Conclusions: These results indicate that HUVEC-A549 cells retain the biological
characteristics of human umbilical vein endothelial cells and
A549 cells. It can be used in the experimental study of lung
cancer cell vaccine.
Collapse
Affiliation(s)
- 玉峰 席
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Muthusamy S, Kannan S, Lee M, Sanjairaj V, Lu WF, Fuh JYH, Sriram G, Cao T. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Biotechnol Bioeng 2021; 118:3150-3163. [PMID: 34037982 DOI: 10.1002/bit.27838] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Bioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and it is of particular interest to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having an advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas. Hence, in the present study, we investigated the use of bioprinting to generate tissue-level capillary-like networks in biofabricated tissue constructs. First, we developed a bioink using collagen type-1 supplemented with xanthan gum (XG) as a thickening agent. Using a commercial extrusion-based multi-head bioprinter and collagen-XG bioink, the component cells were spatially assembled, wherein the endothelial cells were bioprinted in a lattice pattern and sandwiched between bioprinted fibroblasts layers. 3D bioprinted constructs thus generated were stable, and maintained structural shape and form. Post-print culture of the bioprinted tissues resulted in endothelial sprouting and formation of interconnected capillary-like networks within the lattice pattern and between the fibroblast layers. Bioprinter-assisted spatial placement of endothelial cells resulted in fabrication of patterned prevascularized constructs that enable potential regenerative applications in the future.
Collapse
Affiliation(s)
| | - Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Vijayavenkataraman Sanjairaj
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Mechanical Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
4
|
Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G. Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr Top Med Chem 2020; 20:433-457. [PMID: 31894749 DOI: 10.2174/1568026620666200102104930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Akella P Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, I- 53100 Siena, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Anti-cancer Immunotherapies Targeting Telomerase. Cancers (Basel) 2020; 12:cancers12082260. [PMID: 32806719 PMCID: PMC7465444 DOI: 10.3390/cancers12082260] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.
Collapse
|
6
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
7
|
Zhou L, Lu M, Zhong W, Yang J, Yin Y, Li M, Li D, Zhang S, Xu M. Low-dose docetaxel enhances the anti-tumour efficacy of a human umbilical vein endothelial cell vaccine. Eur J Pharm Sci 2019; 142:105163. [PMID: 31756447 DOI: 10.1016/j.ejps.2019.105163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Our previous studies have indicated that human umbilical vein endothelial cell (HUVEC) vaccination appears to be a potentially promising anti-angiogenesis therapy, but the modest therapeutic anti-tumour efficiency limits its clinical use. This highlights the importance of identifying more potent therapeutic HUVEC vaccine strategies for clinical testing. In the present study, the immune-modulating doses of docetaxel (DOC) was combined with 1 × 106 viable HUVECs as a means to enhance the therapeutic anti-tumour efficiency of the HUVEC vaccine. Our results demonstrated that 5 mg/kg DOC administrated prior to HUVEC vaccine could most effectively assist HUVEC vaccine to display a remarkable suppression of tumour growth and metastasis as wells as a prolongation of survival time in a therapeutic procedure. CD31 immunohistochemical analysis of the excised tumours confirmed a significant reduction in vessel density after treatment with the HUVEC vaccine with 5 mg/kg DOC. Additionally, an increased HUVEC-specific antibody level, activated CTLs and an elevated IFN-γ level in cultured splenocytes were revealed after treatment with HUVEC vaccine with 5 mg/kg DOC. Finally, 5 mg/kg DOC coupled with the HUVEC vaccine led to induction of significant increases in CD8+T cells and decrease in Tregs in the tumour microenvironment. Taken together, all the results verified that 5 mg/kg DOC could assist HUVEC vaccine to elicit strong HUVEC specific humoral and cellular responses, which could facilitate the HUVEC vaccine-mediated inhibition of cancer growth and metastasis. These findings provide the immunological rationale for the combined use of immune-modulating doses of DOC and HUVEC vaccines in patients with cancer.
Collapse
Affiliation(s)
- Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Meiyu Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weilan Zhong
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junhou Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yancun Yin
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Defang Li
- Collega of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
8
|
Lu M, Yao Q, Liu H, Zhong W, Gao J, Si C, Zhou L, Zhang S, Xu M. Combination of Human Umbilical Vein Endothelial Cell Vaccine and Docetaxel Generates Synergistic Anti-Breast Cancer Effects. Cancer Biother Radiopharm 2019; 34:464-471. [DOI: 10.1089/cbr.2018.2721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meiyu Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Qingshou Yao
- Department of Life Sciences, Shandong Agricultural University, Tai'an, P.R. China
| | - Hong Liu
- Recombiant Antibody Department, Shandong Boan Biotechnology Co., Ltd., Yantai, P.R. China
| | - Weilan Zhong
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Jiuxiang Gao
- Drug Screen and Evaluation Research Center, Shandong International Biotechnology Park Development Co., Ltd., Yantai, P.R. China
| | - Chunfeng Si
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| |
Collapse
|
9
|
Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019; 8:cells8050494. [PMID: 31121964 PMCID: PMC6562839 DOI: 10.3390/cells8050494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.
Collapse
|
10
|
Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20081823. [PMID: 31013796 PMCID: PMC6515163 DOI: 10.3390/ijms20081823] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Telomerase, an enzyme responsible for the synthesis of telomeres, is activated in many cancer cells and is involved in the maintenance of telomeres. The activity of telomerase allows cancer cells to replicate and proliferate in an uncontrolled manner, to infiltrate tissue, and to metastasize to distant organs. Studies to date have examined the mechanisms involved in the survival of cancer cells as targets for cancer therapeutics. These efforts led to the development of telomerase inhibitors as anticancer drugs, drugs targeting telomere DNA, viral vectors carrying a promoter for human telomerase reverse transcriptase (hTERT) genome, and immunotherapy targeting hTERT. Among these novel therapeutics, this review focuses on immunotherapy targeting hTERT and discusses the current evidence and future perspectives.
Collapse
|
11
|
Li R, Mi X, Yang S, Yang Y, Zhang S, Hui R, Chen Y, Zhang W. Long-term stimulation of angiotensin II induced endothelial senescence and dysfunction. Exp Gerontol 2019; 119:212-220. [PMID: 30776409 DOI: 10.1016/j.exger.2019.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
The role of angiotensin II (Ang II) in hypertension has been clarified, but recent studies show that aging-associated arterial changes and those with hypertension as well as atherosclerosis may have some common pathogenesis. This study aimed to clarify the effects of Ang II on endothelial senescence by establishing a replicative senescence model of human umbilical vein endothelial cells (HUVECs) in vitro. The population-doubling level (PDL) was calculated, PDL5 and PDL25 respectively referred to cells cultured for 2 days and 30 days. Compared with Ang II-treated young PDL5 cells, chronic stimulation of Ang II significantly promoted the senescence-associated β-galactosidase activity and expression of senescence-related genes p16 and p21, slowed down cell growth rate, and decreased expression of longevity-related genes sirtuin1 as well as telomerase activity in senescent PDL25 cells (all P < 0.05). Moreover, expression of pro-inflammatory cytokines and adhesion molecules were up-regulated in Ang II-treated PDL25 cells (all P < 0.05). Ang II-induced senescent progression and inflammation were attenuated by angiotensin receptor blocker valsartan. In young PDL5 cells, Ang II promoted the endothelial viability including cell proliferation, migration, angiogenesis and cell adhesion to monocytes; however, chronic stimulation of Ang II suppressed the cell viability, promoted cell adhesion and apoptosis in senescent PDL25 cells, which could be ameliorated by short-term valsartan, but long-term valsartan had no effects. In addition, Ang II-induced senescent features could be partly recovered if Ang II was stopped at PDL20. These findings suggested that chronic stimulation of Ang II can accelerate the endothelial senescence process which is implicated in aging-related atherosclerosis.
Collapse
Affiliation(s)
- Rongxia Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Xuenan Mi
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Yunyun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Shuyuan Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China.
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beilishi Road 167, Xicheng District, Beijing 100037, China.
| |
Collapse
|
12
|
Huang K, Sun B, Luo N, Guo H, Hu J, Peng J. Programmed Death Receptor 1 (PD1) Knockout and Human Telomerase Reverse Transcriptase (hTERT) Transduction Can Enhance Persistence and Antitumor Efficacy of Cytokine-Induced Killer Cells Against Hepatocellular Carcinoma. Med Sci Monit 2018; 24:4573-4582. [PMID: 29967316 PMCID: PMC6060692 DOI: 10.12659/msm.910903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The weak antitumor efficacy and limited lifespan are the main obstacles that hinder the therapeutic effect of cytokine-induced killer (CIK) cell immunotherapy. In the study, we enhanced the persistence and the antitumor efficacy of CIK cell through PD-1 knockout and hTERT transduction. MATERIAL AND METHODS CIK cells were cultured from patients with hepatocellular carcinoma and PD-1 gene was knocked out through the Cas9 ribonucleoproteins (Cas9 RNPs) electroporation. TIDE assay, T7E1 mismatch cleavage assay, and clone Sanger sequencing were used to detect PD-1 knockout efficiency. The immunophenotype was analyzed by flow cytometry. After PD-1 knockout, the hTERT gene was transduced into PD-1 KO/CIK cells with lentiviral transduction. The hTERT expression and persistence of hTERT/PD-1 KO/CIK cells were evaluated by Western blotting and proliferation curve. The antitumor efficacy was detected by ELISPOT and cytotoxicity assay. The telomere length was measured by the Q-FISH and qPCR method. The karyotype assay was used to analyze the chromosome structural stability. RESULTS The optimal knockout efficiency of PD-1 gene in CIK cells could reach 41.23±0.52%. PD-1 knockout did not affect the immunophenotype of CIK cells. The hTERT transduction enhanced persistence and increased the telomere length. ELISPOT and cytotoxicity assay showed hTERT/PD-1 KO/CIK cells had an enhanced antitumor efficacy. Meanwhile, PD-1 KO/CIK cells transduced with hTERT showed a normal karyotype. CONCLUSIONS PD-1 knockout combined with hTERT transduction could prolong the lifespan and enhance antitumor efficacy of CIK cells against hepatocellular carcinoma cell line.
Collapse
Affiliation(s)
- Kanghua Huang
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Bowen Sun
- Beijing Sinovaccine Biotechnology Company Limited, Beijing, China (mainland)
| | - Nan Luo
- Department of Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China (mainland)
| | - Huahu Guo
- Department of Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China (mainland)
| | - Jili Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland).,Department of Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China (mainland)
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland).,Department of Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China (mainland)
| |
Collapse
|
13
|
Xu Q, Gu J, Lv Y, Yuan J, Yang N, Chen J, Wang C, Hou X, Jia X, Feng L, Yin G. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response. Oncol Lett 2018; 15:3437-3446. [PMID: 29467868 PMCID: PMC5795950 DOI: 10.3892/ol.2018.7734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5′-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3–9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3–9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Junfei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - You Lv
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Jiarui Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Nan Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Juan Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Chunfei Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xuefeng Hou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaobin Jia
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Guowen Yin
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
14
|
Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms. Eur J Pharm Sci 2017; 114:228-237. [PMID: 29277666 DOI: 10.1016/j.ejps.2017.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023]
Abstract
Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine.
Collapse
|
15
|
Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine 2017; 35:5768-5775. [DOI: 10.1016/j.vaccine.2017.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
|
16
|
Yang Y, Lu J, Liu H, Jin G, Bai R, Li X, Wang D, Zhao J, Huang Y, Liu K, Xing Y, Dong Z. Dendritic cells loading autologous tumor lysate promote tumor angiogenesis. Tumour Biol 2016; 37:10.1007/s13277-016-5312-7. [PMID: 27726097 DOI: 10.1007/s13277-016-5312-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DC) have been exploited for vaccination against cancer for years. DC loading autologous tumor lysate (ATL-DC) have been assessed in ongoing clinical trials, but frequently do not meet expectation. In this study, we found that mice immunized with ATL-DC induced less protective anti-tumor effect than immunized with DC alone. The percentage of CD8+ T cells and the lysis efficiency of CTLs to auto tumor cells in ATL-DC vaccination group was less than that of DC group. Moreover, vaccination of mice with ATL-DC also promoted tumor angiogenesis by analyzing the CD31 positive microvessel density and hemoglobin content of tumor specimens. Human umbilical vein endothelial cells (HUVEC) have been proved effective in the anti-angiogenesis immunity against cancer. However, in the following research we found that the anti-tumor effect was attenuated while immunized mice with HUVEC combined with ATL-DC (HUVEC + ATL-DC). Furthermore, immunized mice with HUVEC + ATL-DC profoundly increased the tumor angiogenesis by analyzing the microvessel density and hemoglobin content of tumor specimens. These data suggest that vaccination using ATL-DC antagonized HUVEC induced anti-angiogenesis effect. Our research for the first time indicated that ATL-DC have the potential to promote the process of tumor angiogenesis in vivo. As vaccines based on DC loading autologous tumor lysate have been used in clinical, this find warned that the safety of this kind of vaccine should be taken into consideration seriously.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing Lu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hangfan Liu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guoguo Jin
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, 450008, People's Republic of China
| | - Xiang Li
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Dongyu Wang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jimin Zhao
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Youtian Huang
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ying Xing
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Ziming Dong
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, No. 100 Science Road, Zhengzhou, 450001, Henan, People's Republic of China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|