1
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
2
|
Schwarztrauber M, Edwards N, Hiryak J, Chandrasekaran R, Wild J, Bommareddy A. Antitumor and chemopreventive role of major phytochemicals against breast cancer development. Nat Prod Res 2024; 38:3623-3643. [PMID: 37646820 DOI: 10.1080/14786419.2023.2251167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer continues to be one of the most commonly diagnosed cancers around the world. Despite the decrease in mortality, there has been a steady increase in its incidence. There is much evidence that naturally occurring phytochemicals could prove to be safer alternatives aimed at prevention and development of breast cancer. In the present review, we discuss important phytochemicals, namely capsaicin, alpha-santalol and diallyl trisulphide that are shown to have chemopreventive and anti-tumour properties against breast cancer development. We examined current knowledge of their bioavailability, safety and modulation of molecular mechanisms including their ability to induce apoptotic cell death, promote cell cycle arrest, and inhibit cellular proliferation in different breast cancer cell lines and in vivo models. This review emphasises the importance of these naturally occurring phytochemicals and their potential of becoming therapeutic options in the arsenal against breast cancer development provided further scientific and clinical validation.
Collapse
Affiliation(s)
| | - Nathaniel Edwards
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - James Hiryak
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - Ritesh Chandrasekaran
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Jayson Wild
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Ajay Bommareddy
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Zhao Q, Zhang R, Wang Y, Li T, Xue J, Chen Z. FOXQ1, deubiquitinated by USP10, alleviates sepsis-induced acute kidney injury by targeting the CREB5/NF-κB signaling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167331. [PMID: 38960057 DOI: 10.1016/j.bbadis.2024.167331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a severe and frequent complication that occurs during sepsis. This study aimed to understand the role of FOXQ1 in S-AKI and its potential upstream and downstream regulatory mechanisms. A cecal ligation and puncture induced S-AKI mouse model in vivo and an LPS-induced HK-2 cell model in vitro were used. FOXQ1 was significantly upregulated in CLP mice and downregulated in the LPS-induced HK-2 cells. Upregulation of FOXQ1 improved kidney injury and dysfunction in CLP mice. Overexpression of FOXQ1 remarkably suppressed the apoptosis and inflammatory response via down-regulating oxidative stress indicators and pro-inflammatory factors (IL-1β, IL-6, and TNF-α), both in vivo and in vitro. From online analysis, the CREB5/NF-κB axis was identified as the downstream target of FOXQ1. FOXQ1 transcriptionally activated CREB5, upregulating its expression. Overexpression of FOXQ1 suppressed the phosphorylation level and nucleus transport of p65. Rescue experiments showed that CREB5 mediates the protective role of FOXQ1 on S-AKI. Furthermore, FOXQ1 was identified as a substrate of USP10, a deubiquitinating enzyme. Ectopic expression of USP10 reduced the ubiquitination of FOXQ1, promoting its protein stability. USP10 upregulation alleviated LPS-induced cell apoptosis and inflammatory response, while suppression of FOXQ1 augmented these trends. Collectively, our results suggest that FOXQ1, deubiquitinated by USP10, plays a protective role in S-AKI induced inflammation and apoptosis by targeting CREB5/NF-κB axis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Hong W, Luan Y, Ma Y, Zhang B, Xiong Y. Transcriptome analysis provides insights into high fat diet-induced kidney injury and moderate intensity continuous training-mediated protective effects. Heliyon 2024; 10:e27157. [PMID: 38444510 PMCID: PMC10912694 DOI: 10.1016/j.heliyon.2024.e27157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Although physics exercise has been utilized to prevent and treat a variety of metabolic diseases, its role in obesity-related kidney diseases remains poorly understood. In this study, we assessed the protective potential of moderate intensity continuous training (MICT) against high fat diet (HFD)-induced kidney injury and found that MICT could significantly reduce obesity indexes (body weight, serum glucose, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol) and kidney injury indexes (serum creatinine and the expression of Kim-1 mRNA) in HFD-fed mice. PAS staining and Masson staining displayed that MICT maintained the morphological structure of kidney subunits and reduced kidney fibrosis in HFD-fed mice. By kidney RNA-seq, we identified several genes and pathways (Cd9, Foxq1, Mier3, TGF-β signaling pathway etc.) that might underlie HFD-induced kidney injury and MICT-mediated protective effects. In conclusion, this study revealed the protective role of MICT in HFD-induced kidney injury and suggested potential targets for the prevention and treatment of obesity-related kidney diseases.
Collapse
Affiliation(s)
- Weihao Hong
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100081, China
| | - Yisheng Luan
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100081, China
| | - Yixuan Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100081, China
| | - Bing Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100081, China
| | - Yingzhe Xiong
- School of Physical Education, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
5
|
Wu J, Wu Y, Chen S, Guo Q, Shao Y, Liu C, Lin K, Wang S, Zhu J, Chen X, Ju X, Xia L, Wu X. PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway. Oncogene 2024; 43:866-883. [PMID: 38297082 DOI: 10.1038/s41388-024-02943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/β-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/β-catenin pathway by stabilising FOXQ1 expression.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Siyu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yang Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chaohua Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Kailin Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jun Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xingzhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Lingfang Xia
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Liu D, Wang W, Wu Y, Qiu Y, Zhang L. LINC00887 Acts as an Enhancer RNA to Promote Medullary Thyroid Carcinoma Progression by Binding with FOXQ1. Curr Cancer Drug Targets 2024; 24:519-533. [PMID: 38804344 DOI: 10.2174/0115680096258716231026063704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.
Collapse
Affiliation(s)
- Daxiang Liu
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| | - Wenjing Wang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China
| | - Yanzhao Wu
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| | - Yongle Qiu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China
| | - Lan Zhang
- Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
| |
Collapse
|
7
|
Zhang K, Sun L, Kang Y. Regulation of phosphoglycerate kinase 1 and its critical role in cancer. Cell Commun Signal 2023; 21:240. [PMID: 37723547 PMCID: PMC10506215 DOI: 10.1186/s12964-023-01256-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Cells that undergo normal differentiation mainly rely on mitochondrial oxidative phosphorylation to provide energy, but most tumour cells rely on aerobic glycolysis. This phenomenon is called the "Warburg effect". Phosphoglycerate kinase 1 (PGK1) is a key enzyme in aerobic glycolysis. PGK1 is involved in glucose metabolism as well as a variety of biological activities, including angiogenesis, EMT, mediated autophagy initiation, mitochondrial metabolism, DNA replication and repair, and other processes related to tumorigenesis and development. Recently, an increasing number of studies have proven that PGK1 plays an important role in cancer. In this manuscript, we discussed the effects of the structure, function, molecular mechanisms underlying PGK1 regulation on the initiation and progression of cancer. Additionally, PGK1 is associated with chemotherapy resistance and prognosis in tumour patients. This review presents an overview of the different roles played by PGK1 during tumorigenesis, which will help in the design of experimental studies involving PGK1 and enhance the potential for the use of PGK1 as a therapeutic target in cancer. Video Abstract.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China
| | - Lixue Sun
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China
| | - Yuanyuan Kang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China.
| |
Collapse
|
8
|
Górska A, Urbanowicz M, Grochowalski Ł, Seweryn M, Sobalska-Kwapis M, Wojdacz T, Lange M, Gruchała-Niedoszytko M, Jarczak J, Strapagiel D, Górska-Ponikowska M, Pelikant-Małecka I, Kalinowski L, Nedoszytko B, Gutowska-Owsiak D, Niedoszytko M. Genome-Wide DNA Methylation and Gene Expression in Patients with Indolent Systemic Mastocytosis. Int J Mol Sci 2023; 24:13910. [PMID: 37762215 PMCID: PMC10530743 DOI: 10.3390/ijms241813910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Mastocytosis is a clinically heterogenous, usually acquired disease of the mast cells with a survival time that depends on the time of onset. It ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The presence of the oncogenic KIT p. D816V gene somatic mutation is a crucial element in the pathogenesis. However, further epigenetic regulation may also affect the expression of genes that are relevant to the pathology. Epigenetic alterations are responsible for regulating the expression of genes that do not modify the DNA sequence. In general, it is accepted that DNA methylation inhibits the binding of transcription factors, thereby down-regulating gene expression. However, so far, little is known about the epigenetic factors leading to the clinical onset of mastocytosis. Therefore, it is essential to identify possible epigenetic predictors, indicators of disease progression, and their link to the clinical picture to establish appropriate management and a therapeutic strategy. The aim of this study was to analyze genome-wide methylation profiles to identify differentially methylated regions (DMRs) in patients with mastocytosis compared to healthy individuals, as well as the genes located in those regulatory regions. Genome-wide DNA methylation profiling was performed in peripheral blood collected from 80 adult patients with indolent systemic mastocytosis (ISM), the most prevalent subvariant of mastocytosis, and 40 healthy adult volunteers. A total of 117 DNA samples met the criteria for the bisulfide conversion step and microarray analysis. Genome-wide DNA methylation analysis was performed using a MethylationEPIC BeadChip kit. Further analysis was focused on the genomic regions rather than individual CpG sites. Co-methylated regions (CMRs) were assigned via the CoMeBack method. To identify DMRs between the groups, a linear regression model with age as the covariate on CMRs was performed using Limma. Using the available data for cases only, an association analysis was performed between methylation status and tryptase levels, as well as the context of allergy, and anaphylaxis. KEGG pathway mapping was used to identify genes differentially expressed in anaphylaxis. Based on the DNA methylation results, the expression of 18 genes was then analyzed via real-time PCR in 20 patients with mastocytosis and 20 healthy adults. A comparison of the genome-wide DNA methylation profile between the mastocytosis patients and healthy controls revealed significant differences in the methylation levels of 85 selected CMRs. Among those, the most intriguing CMRs are 31 genes located within the regulatory regions. In addition, among the 10 CMRs located in the promoter regions, 4 and 6 regions were found to be either hypo- or hypermethylated, respectively. Importantly, three oncogenes-FOXQ1, TWIST1, and ERG-were identified as differentially methylated in mastocytosis patients, for the first time. Functional annotation revealed the most important biological processes in which the differentially methylated genes were involved as transcription, multicellular development, and signal transduction. The biological process related to histone H2A monoubiquitination (GO:0035518) was found to be enriched in association with higher tryptase levels, which may be associated with more aberrant mast cells and, therefore, more atypical mast cell disease. The signal in the BAIAP2 gene was detected in the context of anaphylaxis, but no significant differential methylation was found in the context of allergy. Furthermore, increased expression of genes encoding integral membrane components (GRM2 and KRTCAP3) was found in mastocytosis patients. This study confirms that patients with mastocytosis differ significantly in terms of methylation levels in selected CMRs of genes involved in specific molecular processes. The results of gene expression profiling indicate the increased expression of genes belonging to the integral component of the membrane in mastocytosis patients (GRM2 and KRTCAP3). Further work is warranted, especially in relation to the disease subvariants, to identify links between the methylation status and the symptoms and novel therapeutic targets.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Allergology, Medical University of Gdansk, 7 Dębinki Street, 80-210 Gdansk, Poland;
| | - Maria Urbanowicz
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Łukasz Grochowalski
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Michał Seweryn
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Tomasz Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-281 Szczecin, Poland;
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.L.); (B.N.)
| | | | - Justyna Jarczak
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | | | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics–Biobank Fahrenheit, Medical University of Gdansk, 80-210 Gdansk, Poland; (I.P.-M.); (L.K.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics–Biobank Fahrenheit, Medical University of Gdansk, 80-210 Gdansk, Poland; (I.P.-M.); (L.K.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.L.); (B.N.)
- Invicta Fertility and Reproductive Center, Molecular Laboratory, 81-740 Sopot, Poland
| | - Danuta Gutowska-Owsiak
- Laboratory of Experimental and Translational Immunology, University of Gdansk, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 7 Dębinki Street, 80-210 Gdansk, Poland;
| |
Collapse
|
9
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
11
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, Chen W, Zhao Y, Zhang B, Dang Y, Zhang X, Zhang S, Wang C, Gibson H, Pile LA, Kidder B, Matherly L, Yang Z, Dou Y, Wu G. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun 2022; 13:6548. [PMID: 36319643 PMCID: PMC9626503 DOI: 10.1038/s41467-022-34239-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.
Collapse
Affiliation(s)
- Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Mu Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaohong Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Lori A Pile
- The Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Benjamin Kidder
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Dynamic transcriptome and LC-MS/MS analysis revealed the important roles of taurine and glutamine metabolism in response to environmental salinity changes in gills of rainbow trout (Oncorhynchus mykiss). Int J Biol Macromol 2022; 221:1545-1557. [PMID: 36122778 DOI: 10.1016/j.ijbiomac.2022.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Recently, the frequent salinity fluctuation has become a growing threat to fishes. However, the dynamic patterns of gene expression in response to salinity changes remain largely unexplored. In the present study, 18 RNA-Seq datasets were generated from gills of rainbow trout at different salinities, including 0 ‰, 6 ‰, 12 ‰, 18 ‰, 24 ‰ and 30 ‰. Based on the strict thresholds, we have identified 63, 1411, 2096, 1031 and 1041 differentially expressed genes in gills of rainbow trout through pairwise comparisons. Additionally, weighted gene co-expression network analysis was performed to construct 18 independent modules with distinct expression patterns. Of them, green and tan modules were found to be tightly related to salinity changes, several hub genes of which are known as the important regulators in taurine and glutamine metabolism. To further investigate their potential roles in response to salinity changes, taurine, glutamine, and their metabolism-related glutamic acid and α-ketoglutaric acid were accurately quantitated using liquid chromatography-tandem mass spectrometry analysis. Results clearly showed that their concentrations were closely associated with salinity changes. These findings suggested that taurine and glutamine play important roles in response to salinity changes in gills of rainbow trout, providing new insights into the molecular mechanism of fishes in salinity adaptation.
Collapse
|
14
|
Xia SL, Ma ZY, Wang B, Gao F, Guo SY, Chen XH. A gene expression profile for the lower osteogenic potent of bone-derived MSCs from osteoporosis with T2DM and the potential mechanism. J Orthop Surg Res 2022; 17:402. [PMID: 36050744 PMCID: PMC9438120 DOI: 10.1186/s13018-022-03291-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteoporosis (OP) patients complicated with type II diabetes mellitus (T2DM) has a higher fracture risk than the non-diabetic patients, and mesenchymal stem cells (MSCs) from T2DM patients also show a weaker osteogenic potent. The present study aimed to provide a gene expression profile in MSCs from diabetic OP and investigated the potential mechanism. Methods The bone-derived MSC (BMSC) was isolated from OP patients complicated with or without T2DM (CON-BMSC, T2DM-BMSC). Osteogenic differentiation was evaluated by qPCR analysis of the expression levels of osteogenic markers, ALP activity and mineralization level. The differentially expressed genes (DEGs) in T2DM-BMSC was identified by RNA-sequence, and the biological roles of DEGs was annotated by bioinformatics analyses. The role of silencing the transcription factor (TF), Forkhead box Q1 (FOXQ1), on the osteogenic differentiation of BMSC was also investigated. Results T2DM-BMSC showed a significantly reduced osteogenic potent compare to the CON-BMSC. A total of 448 DEGs was screened in T2DM-BMSC, and bioinformatics analyses showed that many TFs and the target genes were enriched in various OP- and diabetes-related biological processes and pathways. FOXQ1 had the highest verified fold change (abs) among the top 8 TFs, and silence of FOXQ1 inhibited the osteogenic differentiation of CON-BMSC. Conclusions Our study provided a comprehensive gene expression profile of BMSC in diabetic OP, and found that downregulated FOXQ1 was responsible for the reduced osteogenic potent of T2DM-BSMC. This is of great importance for the special mechanism researches and the treatment of diabetic OP. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03291-2.
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xu-Han Chen
- Zhoupu Community Health Service Center, 163 Shenmei East Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
15
|
Dong Q, Yan L, Xu Q, Hu X, Yang Y, Zhu R, Xu Q, Yang Y, Wang B. Pan-cancer analysis of forkhead box Q1 as a potential prognostic and immunological biomarker. Front Genet 2022; 13:944970. [PMID: 36118871 PMCID: PMC9475120 DOI: 10.3389/fgene.2022.944970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Forkhead box Q1 (FOXQ1) is a member of the forkhead transcription factor family involved in the occurrence and development of different tumors. However, the specific expression patterns and functions of FOXQ1 in pan-cancer remain unclear. Therefore, we collected the expression, mutation, and clinical information data of 33 tumors from The Cancer Genome Atlas database. Via public pan-cancer transcriptome data analysis, we found that FOXQ1 is differentially expressed in various tumors at tissue and cell levels, such as liver hepatocellular carcinoma, colon adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, thyroid carcinoma, and kidney renal clear cell carcinoma. Kaplan–Meier and Cox analyses suggested that FOXQ1 expression was associated with poor overall survival of cutaneous melanoma and thymoma. Its expression was also associated with good disease-specific survival (DSS) in prostate adenocarcinoma but poor DSS in liver hepatocellular carcinoma. In addition, FOXQ1 expression was associated with poor disease-free survival of pancreatic adenocarcinoma. Moreover, FOXQ1 expression was closely related to the tumor mutational burden in 14 tumor types and microsatellite instability (MSI) in 8 tumor types. With an increase in stromal and immune cells, FOXQ1 expression was increased in breast invasive carcinoma, pancreatic adenocarcinoma, thyroid carcinoma, lung adenocarcinoma, and ovarian serous cystadenocarcinoma, while its expression was decreased in pancreatic adenocarcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma. We also found that FOXQ1 expression was related to the infiltration of 22 immune cell types in different tumors (p < 0.05), such as resting mast cells and resting memory CD4 T cells. Last, FOXQ1 was coexpressed with 47 immune-related genes in pan-cancer (p < 0.05). In conclusion, FOXQ1 expression is closely related to prognosis, clinicopathological parameters, cancer-related pathway activity, the tumor mutational burden, MSI, the tumor microenvironment, immune cell infiltration, and immune-related genes and has the potential to be a diagnostic and prognostic biomarker as well as an immunotherapy target for tumors. Our findings provide important clues for further mechanistic research into FOXQ1.
Collapse
Affiliation(s)
- Qiguan Dong
- Department of Radiation Oncology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, China
- *Correspondence: Qiguan Dong, ; Yuchao Yang, ; Bengang Wang,
| | - Lirong Yan
- Tumour Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Qingbang Xu
- Department of Pain Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianliang Hu
- Department of Breast Surgery, The 3rd People’s Hospital of Liaoyang, Liaoyang, China
| | - Yan Yang
- Department of Radiation Oncology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, China
| | - Ruiwu Zhu
- Department of Thoracic Surgery, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, China
| | - Qian Xu
- Tumour Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuchao Yang
- Department of Neurology, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, China
- *Correspondence: Qiguan Dong, ; Yuchao Yang, ; Bengang Wang,
| | - Bengang Wang
- Department of Hepatobiliary Surgery, Institute of General Surgery, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiguan Dong, ; Yuchao Yang, ; Bengang Wang,
| |
Collapse
|
16
|
Kim SH, Singh SV. Monocarboxylate transporter 1 is a novel target for breast cancer stem like-cell inhibition by diallyl trisulfide. Mol Carcinog 2022; 61:752-763. [PMID: 35512572 PMCID: PMC9262868 DOI: 10.1002/mc.23415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
Diallyl trisulfide (DATS) is a promising small molecule phytochemical that exhibits in vitro and in vivo activity in multiple preclinical solid tumor models including breast cancer, but the underlying mechanism is not fully understood. We have shown previously that forkhead box Q1 (FoxQ1) transcription factor is a novel target for breast cancer stem-like cells (bCSC) inhibition by DATS. Analysis of the breast TCGA (The Cancer Genome Atlas) data revealed that FoxQ1 expression was positively associated with that of SLC16A1/monocarboxylate transporter 1 (MCT1). Western blot analysis confirmed increased expression of MCT1 protein in SUM159 (basal-like) and MCF-7 cells (luminal-type) stably transfected to overexpress FoxQ1. Furthermore, FoxQ1 was recruited to the promoter of SLC16A1/MCT1. Treatment of SUM159 and MCF-7 cell lines with DATS resulted in suppression of MCT1 protein level that was accompanied by a decrease in intracellular and secreted levels of lactate. Overexpression or knockdown of MCT1 protein failed to alter DATS-mediated inhibition of colony formation or cell migration when compared to corresponding control cells. On the other hand, overexpression of MCT1 protein conferred partial but statistically significant protection against DATS-mediated inhibition of bCSC fraction (CD49fhigh /CD44high and aldehyde dehydrogenase 1 activity). The size of the mammospheres was relatively smaller in the DATS-treated group compared to control group. Inhibition of bCSC upon DATS treatment was augmented by knockdown of the MCT1 protein. In conclusion, the present study reveals that MCT1 is a novel target for bCSC inhibition by DATS treatment.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Hillman Cancer Center Research Pavilion, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Kim SH, Singh SV. The FoxQ1 transcription factor is a novel regulator of electron transport chain complex I subunits in human breast cancer cells. Mol Carcinog 2022; 61:372-381. [PMID: 34939230 PMCID: PMC8837712 DOI: 10.1002/mc.23381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
The FoxQ1 is an oncogenic transcription factor that is overexpressed in basal-like and luminal-type human breast cancers when compared to the normal mammary tissue. The FoxQ1 is implicated in mammary tumor progression. However, the mechanism by which FoxQ1 promotes mammary tumorigenesis is not fully understood. In this study, we present experimental evidence for a novel function of FoxQ1 in the regulation of complex I activity of the electron transport chain. The RNA-seq data from FoxQ1 overexpressing basal-like SUM159 cells revealed a statistically significant increase in the expression of complex I subunits NDUFS1 and NDUFS2 when compared to the empty vector (EV) transfected control cells. Consistent with these results, the basal and ATP-linked oxygen consumption rates were significantly increased by FoxQ1 overexpression in SUM159 and luminal-type MCF-7 cells. The FoxQ1 overexpression in both cell lines resulted in increased intracellular levels of pyruvate, lactate, and ATP that was associated with overexpression of pyruvate dehydrogenase and pyruvate carboxylase proteins. Activity and assembly of complex I were significantly enhanced by FoxQ1 overexpression in SUM159 and MCF-7 cells that correlated with increased mRNA and/or protein levels of complex I subunits NDUFS1, NDUFS2, NDUFV1, and NDUFV2. The chromatin immunoprecipitation assay revealed the recruitment of FoxQ1 at the promoters of both NDUFS1 and NDUFV1. The cell proliferation of SUM159 and MCF-7 cells was increased significantly by overexpression of NDUFS1 as well as NDUFV1 proteins. In conclusion, we propose that increased complex I-linked oxidative phosphorylation is partly responsible for oncogenic role of FoxQ1 at least in human breast cancer cells.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Sheng L, Chen C, Chen Y, He Y, Zhuang R, Gu Y, Yan Q, Li W, Lu C. vFLIP-regulated competing endogenous RNA (ceRNA) networks targeting lytic induction for KSHV-associated malignancies. J Med Virol 2022; 94:2766-2775. [PMID: 35149992 DOI: 10.1002/jmv.27654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes life-long latent infection and malignancies, including Kaposi sarcoma (KS) commonly found in AIDS patients. Lytic replication can be induced to kill tumor cells harboring latent KSHV, through viral cytopathic effects and the subsequent antiviral immune responses. Viral FLICE-inhibitory protein (vFLIP), encoded by KSHV ORF K13, inhibits KSHV lytic reactivation, implying that the competing endogenous RNA (ceRNA) networks regulated by vFLIP can be modulated to induce the lytic reactivation of latent KSHV, a promising strategy for KSHV-associated malignancies. Here, we performed whole-transcriptome sequencing to reveal the global landscape of non-coding RNAs and mRNAs in iSLK-RGB-BAC16 cells and iSLK-RGB-K13 mutant cells. It showed that vFLIP regulated 227 differently expressed (DE) lncRNAs, 57 DE circRNAs, 20 DE miRNAs and 1371 DE mRNAs. Enrichment analysis verified that riboflavin metabolism was simultaneously enriched in DE genes related to miRNAs, lncRNAs, and circRNAs. The upregulated hsa-miR-378i and hsa-miR-3654, and downregulated miR-4467, miR-3163, miR-4451 and miR-4257 were significantly enriched in the ceRNA complex network, which contained 9 upregulated and 7 downregulated circRNAs, 5 upregulated and 85 downregulated lncRNAs, 5 upregulated and 35 downregulated mRNAs. Finally, we constructed and validated two vFLIP-regulated ceRNA networks: circRNA hsa_circ_0070049/hsa-miR-378i/SPEG/FOXQ1 and lncRNA AL031123.1/hsa-miR-378i/SPEG/FOXQ1. Taken together, the two ceRNA networks may mediate KSHV reactivation. These novel findings refreshed the present understanding of ceRNA network in KSHV lytic induction and provided potential therapeutic targets for KSHV-associated malignancies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liuxue Sheng
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chen Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yujia He
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ruoyu Zhuang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|
19
|
Fu H, Sun H, Kong H, Lou B, Chen H, Zhou Y, Huang C, Qin L, Shan Y, Dai S. Discoveries in Pancreatic Physiology and Disease Biology Using Single-Cell RNA Sequencing. Front Cell Dev Biol 2022; 9:732776. [PMID: 35141228 PMCID: PMC8819087 DOI: 10.3389/fcell.2021.732776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcriptome analysis is used to study gene expression in human tissues. It can promote the discovery of new therapeutic targets for related diseases by characterizing the endocrine function of pancreatic physiology and pathology, as well as the gene expression of pancreatic tumors. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) can detect transcriptional activity within a single cell. The scRNA-seq had an invaluable contribution to discovering previously unknown cell subtypes in normal and diseased pancreases, studying the functional role of rare islet cells, and studying various types of cells in diabetes as well as cancer. Here, we review the recent in vitro and in vivo advances in understanding the pancreatic physiology and pathology associated with single-cell sequencing technology, which may provide new insights into treatment strategy optimization for diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Haotian Fu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Lou
- Department of Surgery, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Hao Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Zhou
- Department of Biology, Boston University, Boston, MA, United States
| | - Chaohao Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| |
Collapse
|
20
|
Liu S, Chen W, Hu H, Zhang T, Wu T, Li X, Li Y, Kong Q, Lu H, Lu Z. Long noncoding RNA PVT1 promotes breast cancer proliferation and metastasis by binding miR-128-3p and UPF1. Breast Cancer Res 2021; 23:115. [PMID: 34922601 PMCID: PMC8684126 DOI: 10.1186/s13058-021-01491-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mounting evidence supports that long noncoding RNAs (lncRNAs) have critical roles during cancer initiation and progression. In this study, we report that the plasmacytoma variant translocation 1 (PVT1) lncRNA is involved in breast cancer progression. METHODS qRT-PCR and western blot were performed to detect the gene and protein expression. Colony formation would healing and transwell assays were used to detect cell function. Dual-luciferase reporter assay and RNA pull-down experiments were used to examine the mechanisms interaction between molecules. Orthotopic mouse models were established to evaluate the influence of PVT1 on tumor growth and metastasis in vivo. RESULTS PVT1 is significant upregulated in breast cancer patients' plasma and cell lines. PVT1 promotes breast cancer cell proliferation and metastasis both in vitro and in vivo. Mechanistically, PVT1 upregulates FOXQ1 via miR-128-3p and promotes epithelial-mesenchymal transition. In addition, PVT1 binds to the UPF1 protein, thereby inducing epithelial-mesenchymal transition, proliferation and metastasis in breast cancer cells. CONCLUSION PVT1 may act as an oncogene in breast cancer through binding miR-128-3p and UPF1 and represents a potential target for BC therapeutic development.
Collapse
Affiliation(s)
- Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiqun Chen
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Hu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Tianzhu Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Xiaoyi Li
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qinzhi Kong
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongda Lu
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
21
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
22
|
Fang G, Fan J, Ding Z, Li R, Lin K, Fu J, Huang Q, Zeng Y, Liu J. Prognostic and Predictive Value of Transcription Factors Panel for Digestive System Carcinoma. Front Oncol 2021; 11:670129. [PMID: 34745933 PMCID: PMC8566925 DOI: 10.3389/fonc.2021.670129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose Digestive system carcinoma is one of the most devastating diseases worldwide. Lack of valid clinicopathological parameters as prognostic factors needs more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of digestive system carcinoma. The aim of the present study was to establish a novel model to improve prognosis prediction of digestive system carcinoma, with a particular interest in transcription factors (TFs). Materials and Methods A TF-related prognosis model of digestive system carcinoma with data from TCGA database successively were processed by univariate and multivariate Cox regression analyses. Then, for evaluating the prognostic prediction value of the model, ROC curve and survival analysis were performed by external data from GEO database. Furthermore, we verified the expression of TFs expression by qPCR in digestive system carcinoma tissue. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict digestive system carcinoma patient survival probability with TCGA database. Results By Cox regression analysis, a panel of 17 TFs (NFIC, YBX2, ZBTB47, ZNF367, CREB3L3, HEYL, FOXD1, TIGD1, SNAI1, HSF4, CENPA, ETS2, FOXM1, ETV4, MYBL2, FOXQ1, ZNF589) was identified to present with powerful predictive performance for overall survival of digestive system carcinoma patients based on TCGA database. A nomogram that integrates TFs was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. Conclusion The 17-TF panel is an independent prognostic factor for digestive system carcinoma, and 17 TFs based nomogram might provide implication an effective approach for digestive system carcinoma patient management and treatment.
Collapse
Affiliation(s)
- Guoxu Fang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhui Fan
- Department of Hepatology for Pregnancy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zongren Ding
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital of Naval Medical University, Shanghai, China
| | - Kongying Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Fu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qizhen Huang
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Department of Hepatopancreatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
23
|
Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, Dyson G, DeGracia D, Polin L, Ratnam M, Gibson H, Wu G. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene 2021; 40:6430-6442. [PMID: 34608266 PMCID: PMC9421946 DOI: 10.1038/s41388-021-02030-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.,Department of Molecular and Cellular Biology, McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James Glassbrook
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Douglas Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Gregory Dyson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Donald DeGracia
- Department of Physiology, Wayne State University school of Medicine, Detroit, MI 48201, USA
| | - Lisa Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
24
|
Luo Y, Wang J, Wang F, Liu X, Lu J, Yu X, Ma X, Peng X, Li X. Foxq1 promotes metastasis of nasopharyngeal carcinoma by inducing vasculogenic mimicry via the EGFR signaling pathway. Cell Death Dis 2021; 12:411. [PMID: 33875643 PMCID: PMC8055972 DOI: 10.1038/s41419-021-03674-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
In nasopharyngeal carcinoma (NPC), the treatment of tumor metastasis and recurrence is challenging and is associated with poor clinical efficacy. Vasculogenic mimicry (VM) is a new blood-supply model of malignant tumor that is closely related to tumors’ distant metastasis. Our previous study demonstrated that miR-124 could target Foxq1 to inhibit NPC metastasis. Whether Foxq1 affects metastasis through vasculogenic mimicry is worth consideration. In this study, we show that VM formation positively correlates with the expression of Foxq1, and EGFR, and the TNM stage in 114 NPC patient samples. Meanwhile, we show that VM-positive NPC patients have a poor prognosis. Furthermore, using in vitro and vivo approaches, we confirm that Foxq1 has a significant effect on NPC metastasis through promoting VM formation, which could be effectively inhibited by EGFR inhibitors (Nimotuzumab or Erlotinib). Also a synergistic efficacy of anti-EGFR and anti-VEGF drugs has been found in NPC inhibition. Mechanistically, the luciferase reporter gene and CHIP assays show that Foxq1 directly binds to the EGFR promoter region and regulates EGFR transcription. In conclusion, our results show that Foxq1 is regulated by miR-124 and that it promotes NPC metastasis by inducing VM via the EGFR signaling pathway. Overall, these results provide a new theoretical support and a novel target selection for anti-VM therapy in the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yunfan Luo
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jie Wang
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Fan Wang
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Juan Lu
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoxiao Yu
- Otorhinolaryngology Head and Neck Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xuemin Ma
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaohong Peng
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Xiangping Li
- Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Wang X, Zhu X. Tumor Forkhead Box Q1 Is Elevated, Correlates with Increased Tumor Size, International Federation of Gynecology and Obstetrics Stage but Worse Overall Survival in Epithelial Ovarian Cancer Patients. Cancer Biother Radiopharm 2021; 37:837-842. [PMID: 33761267 DOI: 10.1089/cbr.2020.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Forkhead box Q1 (FOXQ1) regulates epithelial ovarian cancer (EOC) cell proliferation, migration, and invasion, while its prognostic effect in EOC patients is unclear. This study aimed to assess FOXQ1 expression in EOC patients by immunohistochemical (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and to analyze its correlation with EOC patients' clinical features and prognosis. Materials and Methods: FOXQ1 protein level in tumor and adjacent tissues from 173 EOC patients who underwent resection was detected by IHC staining and further scored by a semiquantitative scoring method; meanwhile, FOXQ1 mRNA level in tumor and adjacent tissues from 105 out of 173 EOC patients (whose fresh-frozen tissues were available) was detected by RT-qPCR. Besides, EOC patients' clinical features and survival data were collected. Results: Both FOXQ1 protein (n = 173) and mRNA (n = 105) levels were increased in tumor tissues compared with adjacent tissues (both p < 0.001) in EOC patients. Meanwhile, tumor FOXQ1 protein level was positively correlated with tumor size (p = 0.005) and International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.037), while FOXQ1 tumor mRNA level was only positively correlated with tumor size (p = 0.015) in EOC patients; however, they were not correlated with other clinical features such as histological subtypes, tumor differentiation, peritoneal cytology, and so on (all p > 0.05). Moreover, FOXQ1 protein (p = 0.030) and mRNA (p = 0.011) levels in tumors were both correlated with worse overall survival (OS) in EOC patients. Conclusion: FOXQ1 is elevated in tumor tissues, and its high tumor expression correlates with increased tumor size, elevated FIGO stage, and worse OS in EOC patients.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowu Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Elian FA, Are U, Ghosh S, Nuin P, Footz T, McMullen TPW, Brindley DN, Walter MA. FOXQ1 is Differentially Expressed Across Breast Cancer Subtypes with Low Expression Associated with Poor Overall Survival. BREAST CANCER-TARGETS AND THERAPY 2021; 13:171-188. [PMID: 33688250 PMCID: PMC7935334 DOI: 10.2147/bctt.s282860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Purpose Forkhead box Q1 (FOXQ1) has been shown to contribute to the development and progression of cancers, including ovarian and breast cancer (BC). However, research exploring FOXQ1 expression, copy number variation (CNV), and prognostic value across different BC subtypes is limited. Our purpose was to evaluate FOXQ1 mRNA expression, CNV, and prognostic value across BC subtypes. Materials and Methods We determined FOXQ1 expression and CNV in BC patient tumors using RT-qPCR and qPCR, respectively. We also analyzed FOXQ1 expression and CNV in BC cell lines in the CCLE database using K-means clustering. The prognostic value of FOXQ1 expression in the TCGA-BRCA database was assessed using univariate and multivariate Cox's regression analysis as well as using the online tools OncoLnc, GEPIA, and UALCAN. Results Our analyses reveal that FOXQ1 mRNA is differentially expressed between different subtypes of BC and is significantly decreased in luminal BC and HER2 patients when compared to normal breast tissue samples. Furthermore, analysis of BC cell lines showed that FOXQ1 mRNA expression was independent of CNV. Moreover, patients with low FOXQ1 mRNA expression had significantly poorer overall survival compared to those with high FOXQ1 mRNA expression. Finally, low FOXQ1 expression had a critical impact on the prognostic values of BC patients and was an independent predictor of overall survival when it was adjusted for BC subtypes and to two other FOX genes, FOXF2 and FOXM1. Conclusion Our study reveals for the first time that FOXQ1 is differentially expressed across BC subtypes and that low expression of FOXQ1 is indicative of poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Fahed A Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ubah Are
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Paulo Nuin
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David N Brindley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Yang P, Liu Y, Qi YC, Lian ZH. High SENP3 Expression Promotes Cell Migration, Invasion, and Proliferation by Modulating DNA Methylation of E-Cadherin in Osteosarcoma. Technol Cancer Res Treat 2020; 19:1533033820956988. [PMID: 33030103 PMCID: PMC7549150 DOI: 10.1177/1533033820956988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SENP3, a sentrin/SUMO2/3-specific protease, is recognized as a transcriptional factor that accumulates under cellular oxidative stress and plays a significant role in the removal of SUMO2/3 modification. In our study, we examined a TCGA dataset and found that the transcripts per million (TPM) value of SENP3 is high in sarcoma, including osteosarcoma (OS). We found that SENP3 was highly expressed in OS cancer tissues when compared with osteofibrous dysplasia tissues. The survival data of SENP3 in TCGA showed that the sarcoma patients with higher SENP3 expression levels showed poor prognosis. In vitro, SENP3 knockdown in OS cancer cells inhibited cell proliferation, migration, and invasion and induced apoptosis. In contrast, SENP3 overexpression reversed these effects. Next, we found that SENP3 inhibited the expression of E-cadherin (E-Cad) by increasing methylation of the E-Cad promoter. Finally, E-Cad expression was increased in the OS cell line MG63 following methylation, and the cell proliferation, migration, and invasion capacity were decreased. In summary, SENP3 played a significant role in OS carcinogenesis and may act as a potential biomarker in the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Pu Yang
- Postdoctoral Research Station of Clinical Medicine & Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, Hunan, PR China
| | - Yan Liu
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| | - Yin Chao Qi
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| | - Zhang Hong Lian
- Department of Plastic Surgery, The 3rd Xiangya Hospital, 504354Central South University, Changsha, PR China
| |
Collapse
|
28
|
Xiang L, Zheng J, Zhang M, Ai T, Cai B. FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2. Stem Cell Res Ther 2020; 11:403. [PMID: 32943107 PMCID: PMC7500022 DOI: 10.1186/s13287-020-01928-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study investigated the role of Forkhead box Q1 (FOXQ1) in the osteogenic differentiation of bone mesenchymal stem cells. METHODS Mouse bone mesenchymal stem cells (mBMSCs) were transfected with lentivirus to generate Foxq1-overexpressing mBMSCs, Foxq1-suppressed mBMSCs, and mBMSC controls. The activity of osteogenic differentiation was evaluated with alizarin red staining, alkaline phosphatase activity assay, and RT-qPCR. Wnt/β-catenin signaling activities were compared among groups by TOPFlash/FOPFlash assay, immunofluorescence staining, and western blot assay of beta-catenin (CTNNB1). Coimmunoprecipitation mass spectrometry was also carried out to identify proteins binding with FOXQ1. RESULTS Our data showed that FOXQ1 expression was positively correlated with the osteogenic differentiation of the mBMSCs. FOXQ1 also promoted the nuclear translocation of CTNNB1 in the mBMSCs, enhancing Wnt/β-catenin signaling, which was also shown to be essential for the osteogenic differentiation-promoting effect of FOXQ1 in the mBMSCs. Annexin A2 (ANXA2) was bound with FOXQ1, and its depletion reversed the promoting effect of FOXQ1 on Wnt/β-catenin signaling. CONCLUSION These results showed that FOXQ1 binds with ANXA2, promoting Wnt/β-catenin signaling in bone mesenchymal stem cells, which subsequently promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China.
| | - Junming Zheng
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, No. 5, Hebin road, Chancheng district, Foshan, 528000, Guangdong, China
| | - Mengdan Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| | - Tingting Ai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| | - Bin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| |
Collapse
|
29
|
Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells' heterogeneity. Nat Commun 2020; 11:4516. [PMID: 32908137 PMCID: PMC7481797 DOI: 10.1038/s41467-020-18207-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.
Collapse
|
30
|
Kim SH, Hahm ER, Singh KB, Singh SV. Novel mechanistic targets of forkhead box Q1 transcription factor in human breast cancer cells. Mol Carcinog 2020; 59:1116-1128. [PMID: 32754922 DOI: 10.1002/mc.23241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor forkhead box Q1 (FoxQ1) is overexpressed in different solid tumors including breast cancer, but the mechanism underlying its oncogenic function is still not fully understood. In this study, we compared RNA-seq data from FoxQ1 overexpressing SUM159 cells with that of empty vector-transfected control cells to identify novel mechanistic targets of this transcription factor. Analysis of The Cancer Genome Atlas (TCGA) data set revealed significantly higher expression of FoxQ1 in black breast cancer patients compared with white women with this disease. In contrast, expression of FoxQ1 was comparable in ductal and lobular carcinomas in the breast cancer TCGA data set. Complementing our published findings in basal-like subtype, immunohistochemistry revealed upregulation of FoxQ1 protein in luminal-type human breast cancer tissue microarrays when compared with normal mammary tissues. Many previously reported transcriptional targets of FoxQ1 (eg, E-cadherin, N-cadherin, fibronectin 1, etc) were verified from the RNA-seq analysis. FoxQ1 overexpression resulted in the downregulation of genes associated with cell cycle checkpoints, M phase, and cellular response to stress/external stimuli as evidenced from the Reactome pathway analysis. Consequently, FoxQ1 overexpression resulted in mitotic arrest in basal-like SUM159 and human mammary epithelial cell line, but not in luminal-type MCF-7 cells. Finally, we show for the first time that FoxQ1 is a direct transcriptional regulator of interleukin (IL)-1α, IL-8, and vascular endothelial growth factor in breast cancer cells as evidenced by chromatin immunoprecipitation assay. In conclusion, the present study reports novel mechanistic targets of FoxQ1 in human breast cancer cells.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Khonthun C, Saikachain N, Popluechai S, Kespechara K, Hiranyakas A, Srikummool M, Surangkul D. Microarray Analysis of Gene Expression Involved in Butyrate-Resistant Colorectal Carcinoma HCT116 Cells. Asian Pac J Cancer Prev 2020; 21:1739-1746. [PMID: 32592372 PMCID: PMC7568904 DOI: 10.31557/apjcp.2020.21.6.1739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Resistance to chemotherapeutic agents is usually found in cancer stem cells (CSCs) and cancer stem-like cells that are often regarded as the target for cancer monitoring. However, the different patterns of their transcriptomic profiling is still unclear. OBJECTIVE This study aims to illustrate the transcriptomic profile of CSCs and butyrate-resistant colorectal carcinoma cells (BR-CRCs), by comparing them with parental colorectal cancer (CRC) cells in order to identify distinguishing transcription patterns of the CSCs and BR-CRCs. METHODS Parental CRC cells HCT116 (HCT116-PT) were cultured and induced to establish the butyrate resistant cell model (HCT116-BR). Commercial enriching of the HCT116-CSCs were grown in a tumorsphere suspension culture, which was followed firstly by the assessment of butyrate tolerance using MTT and PrestoBlue. Then their gene expression profiling was analyzed by microarray. RESULTS The results showed that both butyrate-resistant HCT116 cells (HCT116-BR) and HCT116-CSCs were more tolerant a butyrate effects than HCT116-PT cells. Differentially expressed gene profiles exhibited that IFI27, FOXQ1, PRF1, and SLC2A3 genes were increasingly expressed in CSCs, and were dramatically overexpressed in HCT116-BR cells when compared with HCT116-PT cells. Moreover, PKIB and LOC399959 were downregulated both in HCT116-CSCs and HCT116-BR cells. CONCLUSION Our findings shed light on the transcriptomic profiles of chemoresistant CRC cells. This data should be useful for further study to provide guidelines for clinical prognosis to determine the guidelines for CRC treatment, especially in patients with chemoresistance and designing novel anti-neoplastic agents.
Collapse
Affiliation(s)
- Chakkraphong Khonthun
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Nongluk Saikachain
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Siam Popluechai
- School of Science, Mae Fah Luang University, Chaiang Rai, Thailand.
- Gut microbiome research group, Mae Fah Luang University, Chaiang Rai, Thailand.
| | | | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
32
|
Liu Z, Qin Y, Dong S, Chen X, Huo Z, Zhen Z. Overexpression of miR-106a enhances oxaliplatin sensitivity of colorectal cancer through regulation of FOXQ1. Oncol Lett 2019; 19:663-670. [PMID: 31897182 PMCID: PMC6924180 DOI: 10.3892/ol.2019.11151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Chemotherapy resistance poses a major challenge for the clinical treatment of colorectal cancer, therefore, the aim of the present study was to examine its underlying mechanisms. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to determine the microRNA (miRNA)/mRNA and protein expression levels, respectively. A dual luciferase assay was conducted for verification of the interaction between miR-106a and 3′untranslated region (UTR) of Forkhead box Q1 (FOXQ1). Cell viability was assessed using an MTT assay. In the present study, it was demonstrated that miR-106a is involved in regulating oxaliplatin sensitivity of colorectal cancer. Transfection of miR-106a mimics slightly inhibited colorectal cancer cell growth and sensitized colorectal cancer cells to oxaliplatin exposure. In addition, miR-106a overexpression induced a decrease of FOXQ1 at mRNA and protein levels in colorectal cancer cells. The enhanced expression of miR-106a also increased the expression of Wnt target genes, including vascular endothelial growth factor-A and matrix metallopeptidase 2, which were reported to be regulated by FOXQ1. It was predicted and validated that miR-106a could repress FOXQ1 expression via direct binding to 3′UTR. Elevation of miR-106a and a decrease of FOXQ1 expression levels were detected in tumor tissues from patients with oxaliplatin-sensitive colorectal cancer, compared with patients with oxaliplatin-resistant colorectal cancer. Furthermore, there was a significant association between miR-106a and FOXQ1 mRNA levels. In conclusion, the present study demonstrated that miR-106a increased oxaliplatin sensitivity of colorectal cancer cells through direct repression of FOXQ1 expression.
Collapse
Affiliation(s)
- Zhihu Liu
- Department of Hepatobiliary Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Yan Qin
- Surgical Department of Gastrointestinal Neoplasms, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Shuxiao Dong
- Obstetrical Department, Xingtai Third Hospital, Xingtai, Hebei 054000, P.R. China
| | - Xiao Chen
- Department of Anesthesiology, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Zhibin Huo
- Surgical Department of Gastrointestinal Neoplasms, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Zhongguang Zhen
- Department of Hepatobiliary Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
33
|
Li L, Xu B, Zhang H, Wu J, Song Q, Yu J. Potentiality of forkhead box Q1 as a biomarker for monitoring tumor features and predicting prognosis in non-small cell lung cancer. J Clin Lab Anal 2019; 34:e23031. [PMID: 31713908 PMCID: PMC6977110 DOI: 10.1002/jcla.23031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to explore the correlation of forkhead box Q1 (FOXQ1) with clinicopathological features and survival profiles in patients with non‐small cell lung cancer (NSCLC). Methods A total of 238 NSCLC patients with TNM stage I‐III who underwent surgical resection were reviewed, and the expression of FOXQ1 in tumor and paired adjacent tissue was detected using immunohistochemistry assays. The clinical data and survival data of patients with NSCLC were retrieved and calculated. Results FOXQ1 expression was increased in tumor tissue (61.3% high expression and 38.7% low expression) compared with paired adjacent tissue (37.8% high expression and 62.2% low expression) (P < .001). In addition, high FOXQ1 expression was associated with larger tumor size (P = .042), lymph node metastasis (P = .040), and advanced TNM stage (P = .002). Disease‐free survival (DFS) (P = .016) and overall survival (OS) (P = .008) were both reduced in patients with high FOXQ1 expression compared with patients with low FOXQ1 expression. Additionally, high FOXQ1 expression (P = .043), poor pathological differentiation (P = .003), and lymph node metastasis (P < .001) were independent risk factors for DFS, and high FOXQ1 expression (P = .021), tumor size (>5 cm) (P = .014), and lymph node metastasis (P < .001) were independent risk factors for OS. Conclusion High FOXQ1 expression is associated with advanced tumor features as well as undesirable survival profiles in patients with NSCLC, implying the potential prognostic value of FOXQ1 for NSCLC.
Collapse
Affiliation(s)
- Lan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, China
| |
Collapse
|
34
|
Genetic mapping of distal femoral, stifle, and tibial radiographic morphology in dogs with cranial cruciate ligament disease. PLoS One 2019; 14:e0223094. [PMID: 31622367 PMCID: PMC6797204 DOI: 10.1371/journal.pone.0223094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/14/2019] [Indexed: 11/19/2022] Open
Abstract
Cranial cruciate ligament disease (CCLD) is a complex trait. Ten measurements were made on orthogonal distal pelvic limb radiographs of 161 pure and mixed breed dogs with, and 55 without, cranial cruciate partial or complete ligament rupture. Dogs with CCLD had significantly smaller infrapatellar fat pad width, higher average tibial plateau angle, and were heavier than control dogs. The first PC weightings captured the overall size of the dog’s stifle and PC2 weightings reflected an increasing tibial plateau angle coupled with a smaller fat pad width. Of these dogs, 175 were genotyped, and 144,509 polymorphisms were used in a genome-wide association study with both a mixed linear and a multi-locus model. For both models, significant (pgenome <3.46×10−7 for the mixed and< 6.9x10-8 for the multilocus model) associations were found for PC1, tibial diaphyseal length and width, fat pad base length, and femoral and tibial condyle width at LCORL, a known body size-regulating locus. Other body size loci with significant associations were growth hormone 1 (GH1), which was associated with the length of the fat pad base and the width of the tibial diaphysis, and a region on CFAX near IRS4 and ACSL4 in the multilocus model. The tibial plateau angle was associated significantly with a locus on CFA10 in the linear mixed model with nearest candidate genes BET1 and MYH9 and on CFA08 near candidate genes WDHD1 and GCH1. MYH9 has a major role in osteoclastogenesis. Our study indicated that tibial plateau slope is associated with CCLD and a compressed infrapatellar fat pad, a surrogate for stifle osteoarthritis. Because of the association between tibial plateau slope and CCLD, and pending independent validation, these candidate genes for tibial plateau slope may be tested in breeds susceptible to CCLD before they develop disease or are bred.
Collapse
|
35
|
Han X, Guo X, Zhang W, Cong Q. MicroRNA-937 inhibits the malignant phenotypes of breast cancer by directly targeting and downregulating forkhead box Q1. Onco Targets Ther 2019; 12:4813-4824. [PMID: 31417280 PMCID: PMC6592024 DOI: 10.2147/ott.s207593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: Numerous microRNAs (miRNAs) are aberrantly expressed in breast cancer, and the dysregulation of miRNAs may affect the aggressiveness of this cancer. Aberrant expression of miRNA-937 (miR-937) in gastric and lung cancers has been reported, which plays tumor-suppressive or oncogenic roles in carcinogenesis including cancer progression. Our purpose was to investigate the involvement of miR-937 in breast cancer progression. Patients and methods: The expression profile of miR-937 in breast cancer was assessed by reverse-transcription quantitative PCR. Biological effects of miR-937 upregulation on the malignant characteristics of breast cancer cells were determined in a series of functional experiments. The direct target of miR-937 in breast cancer cells was also identified. Results: Herein, the expression levels of miR-937 were notably lower in breast cancer, and its underexpression was significantly correlated with lymph node metastasis and TNM stage. Patients with breast cancer underexpressing miR-937 showed shorter overall survival than did patients with breast cancer overexpressing miR-937. Proliferation, migration, and invasiveness of breast cancer cells were evidently suppressed by miR-937 upregulation. In addition, ectopic miR-937 expression hindered breast cancer tumor growth in vivo. Forkhead box Q1 (FOXQ1) mRNA was found to be a direct target of miR-937 in breast cancer. FOXQ1 turned out to be overexpressed in breast cancer tissues, and its overexpression negatively correlated with miR-937 expression. Moreover, silencing of FOXQ1 recapitulated the tumor-suppressive effects of miR-937 overexpression on breast cancer cells. Notably, FOXQ1 restoration abrogated the miR-937-mediated suppression of proliferation, migration, and invasiveness of breast cancer cells. Conclusion: These results collectively revealed that miR-937 acts as a tumor suppressor in breast cancer and restrains cancer progression by directly targeting FOXQ1 mRNA. These data suggest that targeting of the novel miR-937–FOXQ1 axis is an attractive therapeutic method against breast cancer.
Collapse
Affiliation(s)
- Xiaoting Han
- Department of Breast Surgery, Weihai Central Hospital, Shandong 264400, People's Republic of China
| | - Xiaolong Guo
- Department of Breast Surgery, Zibo Maternity and Child Health Hospital, Shandong 255020, People's Republic of China
| | - Wenzhen Zhang
- Department of Breast Surgery, Rizhao Central Hospital, Shandong 276801, People's Republic of China
| | - Qiumei Cong
- Department of Oncology, Weihai Central Hospital, Shandong 264400, People's Republic of China
| |
Collapse
|
36
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
37
|
Li Y, Wang HQ, Wang AC, Li YX, Ding SS, An XJ, Shi HY. Overexpression of Forkhead box Q1 correlates with poor prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2019; 90:334-342. [PMID: 30378716 DOI: 10.1111/cen.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Forkhead box Q1 (FOXQ1), a member of the forkhead transcription factor family, plays important parts in cell cycle, apoptosis, metabolism, immunology and tumour genesis. Its expression has been associated with poor clinical prognosis in various tumours. However, the clinical significance of FOXQ1 in papillary thyroid carcinoma (PTC) has not been fully studied. The purpose of this study was to investigate whether FOXQ1 is correlated with poor prognosis in PTC. DESIGN/METHODS We performed a retrospective study of 136 PTCs. Immunohistochemistry (IHC) was used to examine the expression of FOXQ1 in 136 PTCs and 47 nodular goitre specimens. Rank-sum test, chi-square test, Kaplan-Meier survival analysis, univariate and multivariate Cox analyses were used to investigate the clinical and prognostic significance of FOXQ1 expression in PTC. RESULTS The comparison of PTC specimens with nodular goitre with papillary hyperplasia specimens revealed an upregulation of FOXQ1 in PTC. Overexpression of FOXQ1 was observed in 63.24% of PTC and correlated with classic variant, tall variant, distant metastasis, AJCC stage and recurrence. FOXQ1-positive expression was associated with shorter disease-free survival: median disease-free survival of FOXQ1-positive patients was 23 months compared with 128 months for FOXQ1-negative patients (Log-rank χ2 = 12.31, P = 0.00045). Additional independent risk factors in this study were multifocality (recurrence-free survival [RFS]: hazard ratio [HR] = 2.391, P < 0.05), extrathyroidal extension (RFS: HR = 3.906, P < 0.05) and positive expression of FOXQ1 (RFS: HR = 6.385, P < 0.01). CONCLUSIONS Our results indicated that FOXQ1 may be a useful additional biomarker to evaluate the progression of PTC and to predict likely relapse of disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Pathology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Hong-Qun Wang
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ai-Chun Wang
- Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, China
| | - Ying-Xue Li
- Department of Pathology, Liaocheng People's Hospital, LiaoCheng, China
| | - Shan-Shan Ding
- Department of Pathology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Xiao-Jing An
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huai-Yin Shi
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
38
|
Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18:5. [PMID: 30621735 PMCID: PMC6325735 DOI: 10.1186/s12943-019-0938-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia.
| |
Collapse
|
39
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
40
|
Shubin VP, Ponomarenko AA, Tsukanov AS, Maynovskaya OA, Rybakov EG, Panina MV, Kashnikov VN, Frolov SA, Shelygin YA. Heterogeneity in Colorectal Primary Tumor and Synchronous Liver Metastases. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Kolesnikova M, Roll MV, Jowdy P, Wolff DW, Polechetti A, Yun DH, Lipchick BC, Paul LM, Wrazen B, Moparthy K, Mudambi S, Morozevich GE, Georgieva SG, Wang J, Shafirstein G, Liu S, Kandel ES, Berman AE, Box NF, Paragh G, Nikiforov MA. FOXQ1 controls the induced differentiation of melanocytic cells. Cell Death Differ 2018; 25:1040-1049. [PMID: 29463842 PMCID: PMC5988681 DOI: 10.1038/s41418-018-0066-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Smith Building, SM-0728, 450 Brookline Ave, Boston, MA, 02215, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Matthew V Roll
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David W Wolff
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Leslie M Paul
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brian Wrazen
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shaila Mudambi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gal Shafirstein
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Neil F Box
- Department of Dermatology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
42
|
Earley AM, Dixon CT, Shiau CE. Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response. PLoS One 2018; 13:e0194207. [PMID: 29534099 PMCID: PMC5849333 DOI: 10.1371/journal.pone.0194207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
FOXQ1 is a member of the forkhead-box transcription factor family that has important functions in development, cancer, aging, and many cellular processes. The role of FOXQ1 in cancer biology has raised intense interest, yet much remains poorly understood. We investigated the possible function of the two zebrafish orthologs (foxq1a and foxq1b) of human FOXQ1 in innate immune cell development and function. We employed CRISPR-Cas9 targeted mutagenesis to create null mutations of foxq1a and foxq1b in zebrafish. Using a combination of molecular, cellular, and embryological approaches, we characterized single and double foxq1a bcz11 and foxq1b bcz18 mutants. This study provides the first genetic mutant analyses of zebrafish foxq1a and foxq1b. Interestingly, we found that foxq1a, but not foxq1b, was transcriptionally regulated during a bacterial response, while the expression of foxq1a was detected in sorted macrophages and upregulated in foxq1a-deficient mutants. However, the transcriptional response to E. coli challenge of foxq1a and foxq1b mutants was not significantly different from that of their wildtype control siblings. Our data shows that foxq1a may have a role in modulating bacterial response, while both foxq1a and foxq1b are not required for the development of macrophages, neutrophils, and microglia. Considering the implicated role of FOXQ1 in a vast number of cancers and biological processes, the foxq1a and foxq1b null mutants from this study provide useful genetic models to further investigate FOXQ1 functions.
Collapse
Affiliation(s)
- Alison M. Earley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Cameron T. Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Celia E. Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
43
|
Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 2018; 373:379-393. [PMID: 29500491 DOI: 10.1007/s00441-018-2815-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are unique precursor cells characterized by active self-renewal and differentiation potential. These cells offer the advantages of ease of isolation and limited ethical issues as a resource and represent a promising cell therapy for neurodegenerative diseases. However, replicative senescence during cell culture as well as low efficiency of cell migration and differentiation after transplantation are major obstacles. In our previous study, we found that FOXQ1 binds directly to the SIRT1 promoter to regulate cellular senescence and also promotes cell proliferation and migration in many tumor cell lines. Currently, little is known about the effects of FOXQ1 on normal somatic cells. Therefore, we examine the effects of FOXQ1 on senescence and migration of MSCs. Lentiviral vector-mediated overexpression of FOXQ1 in human umbilical cord mesenchymal stem cells (hUC-MSCs) resulted in enhanced cell proliferation and viability. Furthermore, the expression of proteins and markers positively associated with senescence (p16, p21, p53) was reduced, whereas expression of proteins negatively associated with senescence (SIRT1, PCNA) was promoted. Following transplantation of hUC-MSCs overexpressing FOXQ1 in an animal model of Alzheimer's disease (APPV717I transgenic mice) resulted in amelioration of the effects of Alzheimer's disease (AD) on cognitive function and pathological senescence accompanied the increased numbers of hUC-MSCs in the AD brain. In conclusion, FOXQ1 overexpression promotes anti-senescence and migration of hUC-MSCs in vitro and in vivo. These findings also suggest that this strategy may contribute to optimization of the efficiency of stem cell therapy.
Collapse
|
44
|
Inhibition of sonic hedgehog signaling blocks cell migration and growth but induces apoptosis via suppression of FOXQ1 in natural killer/T-cell lymphoma. Leuk Res 2017; 64:1-9. [PMID: 29132010 DOI: 10.1016/j.leukres.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The present study explored the effects of Forkhead box Q1 (FOXQ1) on cell proliferation, cell cycle and apoptosis via the Sonic hedgehog (Shh) pathway in Natural killer/T-cell lymphoma (NKTCL). Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect FOXQ1 expression in 117 NKTCL patients and 120 healthy controls. Additionally, FOXQ1 expression in NKTCL cell lines (HANK-1, NK-92, SNK-6, SNT-8 and YT) was determined by western blotting and qRT-PCR. SNK-6 cells were transfected with FOXQ1-shRNA or Shh pathway inhibitor Cyclopamine/recombinant protein Shh. Cell counting kit-8 (CCK-8) and 5-bromo-2-deoxy-uridine (BrdU) incorporation assays were conducted to detect cell proliferation, flow cytometry was used to determine the cell cycle and cell apoptosis, and western blotting was used to detect protein expression. FOXQ1 expression was higher in NKTCL patients than in healthy controls, which was related to Ann Arbor stage, bone marrow involvement and the 5year survival rate in NKTCL patients. Moreover, FOXQ1 expression, pathological type, Ann Arbor stage, B symptom and bone marrow involvement were independent risk factors in NKTCL. Shh pathway-related proteins were down-regulated after transfection of SNK-6 cells with FOXQ1-shRNA. Additionally, SNK-6 cell proliferation was greatly reduced, the cell cycle was blocked at the G0/G1 phase, and the expression of CyclinD1 and CyclinE was markedly decreased, while an increase in cell apoptosis with elevated Bcl-2-associated X protein (Bax) and Caspase-3 and reduced B-cell lymphoma/leukemia-2 (Bcl-2) were also observed. However, no significant alterations were observed between the FOXQ1-shRNA+Shh and Blank groups. The inhibition of FOXQ1 restricted NKTCL cell proliferation and growth but induced apoptosis via blocking the Shh signaling pathway.
Collapse
|
45
|
Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget 2017; 8:70097-70115. [PMID: 29050264 PMCID: PMC5642539 DOI: 10.18632/oncotarget.19591] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
We analysed the RNA sequence-based microRNA (miRNA) signature of pancreatic ductal adenocarcinoma (PDAC). Aberrantly expressed miRNAs were successfully identified in this signature. Using the PDAC signature, we focused on 4 clustered miRNAs, miR-216a-5p, miR-216a-3p, miR-216b-5p and miR-216b-3p on human chromosome 2p16.1. All members of the miR-216 cluster were significantly reduced in PDAC specimens. Ectopic expression of these miRNAs suppressed cancer cell aggressiveness, suggesting miR-216 cluster as anti-tumour miRNAs in PDAC cells. The impact of miR-216b-3p (passenger strand of pre-miR-216b) on cancer cells is still ambiguous. Forkhead box Q1 (FOXQ1) was directly regulated by miR-216b-3p and overexpression of FOXQ1 was confirmed in clinical specimens. High expression of FOXQ1 predicted a shorter survival of patients with PDAC by Kaplan–Meier analysis. Loss-of-function assays showed that cancer cell migration and invasion activities were significantly reduced by siFOXQ1 transfectants. We investigated pathways downstream from FOXQ1 by using genome-wide gene expression analysis. Identification of the miR-216-3p/FOXQ1-mediated network in PDAC should enhance understanding of PDAC aggressiveness at the molecular level.
Collapse
Affiliation(s)
- Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|