1
|
Rodrigo MAM, Michalkova H, Jimenez AMJ, Petrlak F, Do T, Sivak L, Haddad Y, Kubickova P, de Los Rios V, Casal JI, Serrano-Macia M, Delgado TC, Boix L, Bruix J, Martinez Chantar ML, Adam V, Heger Z. Metallothionein-3 is a multifunctional driver that modulates the development of sorafenib-resistant phenotype in hepatocellular carcinoma cells. Biomark Res 2024; 12:38. [PMID: 38594765 PMCID: PMC11003176 DOI: 10.1186/s40364-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND & AIMS Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ana Maria Jimenez Jimenez
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Do
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Petra Kubickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vivian de Los Rios
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - J Ignacio Casal
- Department of Cellular and Molecular Medicine and Proteomic Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid, 280 40, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
| | - Loreto Boix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Bruix
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria L Martinez Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, 48160, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
2
|
Wang X, Wang N, Zhong LLD, Su K, Wang S, Zheng Y, Yang B, Zhang J, Pan B, Yang W, Wang Z. Development and Validation of a Risk Prediction Model for Breast Cancer Prognosis Based on Depression-Related Genes. Front Oncol 2022; 12:879563. [PMID: 35619902 PMCID: PMC9128552 DOI: 10.3389/fonc.2022.879563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Depression plays a significant role in mediating breast cancer recurrence and metastasis. However, a precise risk model is lacking to evaluate the potential impact of depression on breast cancer prognosis. In this study, we established a depression-related gene (DRG) signature that can predict overall survival (OS) and elucidate its correlation with pathological parameters and sensitivity to therapy in breast cancer. Methods The model training and validation assays were based on the analyses of 1,096 patients from The Cancer Genome Atlas (TCGA) database and 2,969 patients from GSE96058. A risk signature was established through univariate and multivariate Cox regression analyses. Results Ten DRGs were determined to construct the risk signature. Multivariate analysis revealed that the signature was an independent prognostic factor for OS. Receiver operating characteristic (ROC) curves indicated good performance of the model in predicting 1-, 3-, and 5-year OS, particularly for patients with triple-negative breast cancer (TNBC). In the high-risk group, the proportion of immunosuppressive cells, including M0 macrophages, M2 macrophages, and neutrophils, was higher than that in the low-risk group. Furthermore, low-risk patients responded better to chemotherapy and endocrine therapy. Finally, a nomogram integrating risk score, age, tumor-node-metastasis (TNM) stage, and molecular subtypes were established, and it showed good agreement between the predicted and observed OS. Conclusion The 10-gene risk model not only highlights the significance of depression in breast cancer prognosis but also provides a novel gene-testing tool to better prevent the potential adverse impact of depression on breast cancer prognosis.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linda L D Zhong
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Kexin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yang
- Atrius Health, Harvard Vanguard Medical Associates, Burlington, MA, United States
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Kalyan G, Slusser-Nore A, Dunlevy JR, Bathula CS, Shabb JB, Muhonen W, Somji S, Sens DA, Garrett SH. Protein interactions with metallothionein-3 promote vectorial active transport in human proximal tubular cells. PLoS One 2022; 17:e0267599. [PMID: 35503771 PMCID: PMC9064079 DOI: 10.1371/journal.pone.0267599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Metallothionein 3 (MT-3) is a small, cysteine-rich protein that binds to essential metals required for homeostasis, as well as to heavy metals that have the potential to exert toxic effects on cells. MT-3 is expressed by epithelial cells of the human kidney, including the cells of the proximal tubule. Our laboratory has previously shown that mortal cultures of human proximal tubular (HPT) cells express MT-3 and form domes in the cell monolayer, a morphological feature indicative of vectorial active transport, an essential function of the proximal tubule. However, an immortalized proximal tubular cell line HK-2 lacks the expression of MT-3 and fails to form domes in the monolayer. Transfection of HK-2 cells with the MT-3 gene restores dome formation in these cells suggesting that MT-3 is required for vectorial active transport. In order to determine how MT-3 imparts this essential feature to the proximal tubule, we sought to identify proteins that interact either directly or indirectly with MT-3. Using a combination of pulldowns, co-immunoprecipitations, and mass spectrometry analysis, putative protein interactants were identified and subsequently confirmed by Western analysis and confocal microscopy, following which proteins with direct physical interactions were investigated through molecular docking. Our data shows that MT-3 interacts with myosin-9, aldolase A, enolase 1, β-actin, and tropomyosin 3 and that these interactions are maximized at the periphery of the apical membrane of doming proximal tubule cells. Together these observations reveal that MT-3 interacts with proteins involved in cytoskeletal organization and energy metabolism, and these interactions at the apical membrane support vectorial active transport and cell differentiation in proximal tubule cultures.
Collapse
Affiliation(s)
- Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Jane R. Dunlevy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - John B. Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Wallace Muhonen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
4
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
5
|
Mesa AM, Mao J, Medrano TI, Bivens NJ, Jurkevich A, Tuteja G, Cooke PS, Rosenfeld CS. Spatial Transcriptomics analysis of uterine gene expression in enhancer of Zeste homolog 2 (Ezh2) conditional knockout mice. Biol Reprod 2021; 105:1126-1139. [PMID: 34344022 DOI: 10.1093/biolre/ioab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.
Collapse
Affiliation(s)
- Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA.,Grupo de Investigación en Agrociencias, Biodiversidad y Territorio - GAMMA, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 N° 52-21, Medellín, Colombia
| | - Jiude Mao
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Nathan J Bivens
- Genomics Technology, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Geetu Tuteja
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Cheryl S Rosenfeld
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.,Data Science and Informatics Institute, University of Missouri, Columbia; MO 65211, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
7
|
Sun S, Liu F, Xian S, Cai D. miR-325-3p Overexpression Inhibits Proliferation and Metastasis of Bladder Cancer Cells by Regulating MT3. Med Sci Monit 2020; 26:e920331. [PMID: 32512576 PMCID: PMC7297032 DOI: 10.12659/msm.920331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND miRNAs have been widely used in cancer treatment. Our study was designed to explore the effects of miR-325-3p in bladder cancer cells. MATERIAL AND METHODS Levels ofd miR-325-3p and MT3 in bladder cancer tissues and cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). miR-325-3p mimics were transfected into bladder cancer T24 cells, and cell migration and invasion rates and cell proliferation were assessed by transwell assay and Cell Counting Kit-8 (CCK-8). The target mRNA for miR-325-3p was predicted by Targetscan7.2 and confirmed by dual-luciferase reporter assay. More experiments were performed to confirm the effects of miR-325-3p and MT3 in T24 cells. Additionally, the levels of TIMP-2, MMP9, and E-cadherin were assessed by Western blotting to identify the effects of miR-325-3p and MT3 on epithelial-mesenchymal transition (EMT). RESULTS miR-325-3p expression was reduced and MT3 was increased in bladder cancer tissues and bladder cancer cells. miR-325-3p mimics suppressed cell proliferation ability and invasion and migration rates of T24 cells. Moreover, miR-325-3p was confirmed to target MT3. Further experiments showed that the effects of increased cell proliferation, invasion, migration, and EMT promoted by MT3 overexpression were abolished by miR-325-3p mimics, proving that miR-325-3p is a tumor suppressor through targeting MT3 in bladder cancer cells. CONCLUSIONS Downregulation of miR-325-3p in bladder cancer regulates cell proliferation, migration, invasion, and EMT by targeting MT3. Furthermore, miR-325-3p is a potential therapeutic target in treating bladder cancer.
Collapse
Affiliation(s)
- Shaopeng Sun
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Feng Liu
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Dawei Cai
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
8
|
A case-control study of Metallothionein-1 expression in breast cancer and breast fibroadenoma. Sci Rep 2019; 9:7407. [PMID: 31092851 PMCID: PMC6520370 DOI: 10.1038/s41598-019-43565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/27/2019] [Indexed: 11/08/2022] Open
Abstract
The overexpression of Metallothionein-1 (MT-1) may play an important role in breast cancer; however, few studies have compared MT-1 expression between breast cancer and fibroadenoma. A cross-sectional controlled study was performed in 66 premenopausal women, aged 20–49 years, who had been histologically diagnosed with breast fibroadenoma or breast cancer. The patients were divided into two groups: group A, control (fibroadenoma, n = 36) and group B, study (breast cancer, n = 30). Immunohistochemistry was performed on tissue samples of fibroadenoma and breast cancer patients to evaluate the expression of metallothionein using an anti-MT-1 polyclonal antibody (rabbit polyclonal anti-metallothionein-Catalog Number biorbyt-orb11042) at a dilution of 1:100. The data were analyzed using NOVA (p < 0.05). Microscopic analysis showed a higher concentration of anti-MT-1-stained nuclei in breast cancer tissues than in fibroadenoma tissues. The mean proportion of cells with anti-MT-1-stained nuclei was 26.93% and 9.10%, respectively, in the study and control groups (p < 0.001). Histological grade 3 tumors showed a significantly higher MT-1 expression than hitological grade 1 (p < 0.05), while breast tumors negative for estrogen-, progesterone- and HER2- receptors had a significantly higher MT-1 expression than positive breast tumors positive for these parameters (p < 0.05). MT-1 protein in women of reproductive age was significantly higher in breast cancer than in fibroadenoma in this study. Furthermore, there was higher MT-1 immunoreactivity in more aggressive tumors.
Collapse
|
9
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
10
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
11
|
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 2018; 63:68-78. [PMID: 28822266 DOI: 10.1016/j.advms.2017.05.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023]
Abstract
The exposure of cells, tissues and extracellular matrix to harmful reactive species causes a cascade of reactions and induces activation of multiple internal defence mechanisms (enzymatic or non-enzymatic) that provide removal of reactive species and their derivatives. The non-enzymatic antioxidants are represented by molecules characterized by the ability to rapidly inactivate radicals and oxidants. This paper focuses on the major intrinsic non-enzymatic antioxidants, including metal binding proteins (MBPs), glutathione (GSH), uric acid (UA), melatonin (MEL), bilirubin (BIL) and polyamines (PAs).
Collapse
|
12
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
13
|
Voels B, Wang L, Sens DA, Garrett SH, Zhang K, Somji S. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells. BMC Cancer 2017; 17:369. [PMID: 28545470 PMCID: PMC5445401 DOI: 10.1186/s12885-017-3355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. Methods MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. Results The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell’s ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Conclusions Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brent Voels
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Departments of Science, Cankdeska Cikana Community College, 214 1st Avenue, Fort Totten, ND, 58335, USA
| | - Liping Wang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Present address: Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huangzhong University of Science and Techology, Wuhan, 430030, People's Republic of China
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Ke Zhang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.
| |
Collapse
|