1
|
Sui X, Wang W, Zhang D, Xu J, Li J, Jia Y, Qin Y. Integrated analysis of ferroptosis and stemness based on single-cell and bulk RNA-sequencing data provide insights into the prognosis and treatment of esophageal carcinoma. Gene 2024; 927:148701. [PMID: 38885819 DOI: 10.1016/j.gene.2024.148701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a significant role in the recurrence and drug resistance of esophageal carcinoma (ESCA). Ferroptosis is a promising anticancer therapeutic strategy that effectively targets CSCs exhibiting high tumorigenicity and treatment resistance. However, there is a lack of research on the combined role of ferroptosis-related genes (FRGs) and stemness signature in the prognosis of ESCA. METHODS The cellular compositions were characterized using single-cell RNA sequencing (scRNA-seq) data from 18 untreated ESCA samples. 50 ferroptosis-related stemness genes (FRSGs) were identified by integrating FRGs with stemness-related genes (SRGs), and then the cells were grouped by AUCell analysis. Next, functional enrichment, intercellular communication, and trajectory analyses were performed to characterize the different groups of cells. Subsequently, the stem-ferr-index was calculated using machine learning algorithms based on the expression profiles of the identified risk genes. Additionally, therapeutic drugs were predicted by analyzing the GDSC2 database. Finally, the expression and functional roles of the identified marker genes were validated through in vitro experiments. RESULTS The analysis of scRNA-seq data demonstrates the diversity and cellular heterogeneity of ESCA. Then, we identified 50 FRSGs and classified cells into high or low ferroptosis score stemness cells accordingly. Functional enrichment analysis conducted on the differentially up-regulated genes between these groups revealed predominant enrichment in pathways associated with intercellular communication and cell differentiation. Subsequently, we identified 9 risk genes and developed a prognostic signature, termed stem_ferr_index, based on these identified risk genes. We found that the stem-ferr-index was correlated with the clinical characteristics of patients, and patients with high stem-ferr-index had poor prognosis. Furthermore, we identified four drugs (Navitoclax, Foretinib, Axitinib, and Talazoparib) with potential efficacy targeting patients with a high stem_ferr_index. Additionally, we delineated two marker genes (STMN1 and SLC2A1). Particularly noteworthy, SLC2A1 exhibited elevated expression levels in ESCA tissues and cells. We provided evidence suggesting that SLC2A1 could influence the migration, invasion, and stemness of ESCA cells, and it was associated with sensitivity to Foretinib. CONCLUSION This study constructed a novel ferroptosis-related stemness signature, identified two marker genes for ESCA, and provided valuable insights for developing more effective therapeutic targets targeting ESCA CSCs in the future.
Collapse
Affiliation(s)
- Xin Sui
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Wenjia Wang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Daidi Zhang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jiayao Xu
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yongxu Jia
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yanru Qin
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Wang J, Harwood CA, Bailey E, Bewicke-Copley F, Anene CA, Thomson J, Qamar MJ, Laban R, Nourse C, Schoenherr C, Treanor-Taylor M, Healy E, Lai C, Craig P, Moyes C, Rickaby W, Martin J, Proby C, Inman GJ, Leigh IM. Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multigene prognostic signature associated with metastasis. J Am Acad Dermatol 2023; 89:1159-1166. [PMID: 37586461 DOI: 10.1016/j.jaad.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumors at high risk of metastasis would have a significant impact on management. OBJECTIVE To develop a robust and validated gene expression profile signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach. METHODS Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 nonmetastasizing and 86 metastasizing) were collected retrospectively from four centers. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets. RESULTS A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk. LIMITATIONS This was a retrospective 4-center study and larger prospective multicenter studies are now required. CONCLUSION The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC.
Collapse
Affiliation(s)
- Jun Wang
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Catherine A Harwood
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma Bailey
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Chinedu Anthony Anene
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Jason Thomson
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Mah Jabeen Qamar
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Rhiannon Laban
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Craig Nourse
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | | | - Mairi Treanor-Taylor
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK; School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Eugene Healy
- Dermatopharmacology, University of Southampton, Southampton General Hospital, Southampton, UK; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Chester Lai
- Dermatopharmacology, University of Southampton, Southampton General Hospital, Southampton, UK; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Craig
- Cellular Pathology, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham General Hospital, Cheltenham, UK
| | - Colin Moyes
- Queen Elizabeth University Hospital, Glasgow, Scotland
| | | | - Joanne Martin
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charlotte Proby
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK; School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Irene M Leigh
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Ogushi K, Yokobori T, Nobusawa S, Shirakura T, Hirato J, Erkhem-Ochir B, Okami H, Dorjkhorloo G, Nishi A, Suzuki M, Otake S, Saeki H, Shirabe K. High Tumoral STMN1 Expression Is Associated with Malignant Potential and Poor Prognosis in Patients with Neuroblastoma. Cancers (Basel) 2023; 15:4482. [PMID: 37760452 PMCID: PMC10526320 DOI: 10.3390/cancers15184482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stathmin 1 (STMN1), a marker for immature neurons and tumors, controls microtubule dynamics by destabilizing tubulin. It plays an essential role in cancer progression and indicates poor prognosis in several cancers. This potential protein has not been clarified in clinical patients with neuroblastoma. Therefore, this study aimed to assess the clinical significance and STMN1 function in neuroblastoma with and without MYCN amplification. METHODS Using immunohistochemical staining, STMN1 expression was examined in 81 neuroblastoma samples. Functional analysis revealed the association among STMN1 suppression, cellular viability, and endogenous or exogenous MYCN expression in neuroblastoma cell lines. RESULT High levels of STMN1 expression were associated with malignant potential, proliferation potency, and poor prognosis in neuroblastoma. STMN1 expression was an independent prognostic factor in patients with neuroblastoma. Furthermore, STMN1 knockdown inhibited neuroblastoma cell growth regardless of endogenous and exogenous MYCN overexpression. CONCLUSION Our data suggest that assessing STMN1 expression in neuroblastoma could be a powerful indicator of prognosis and that STMN1 might be a promising therapeutic candidate against refractory neuroblastoma with and without MYCN amplification.
Collapse
Affiliation(s)
- Kenjiro Ogushi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Takahiro Shirakura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Junko Hirato
- Department of Pathology, Public Tomioka General Hospital, Tomioka 370-2393, Japan;
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Akira Nishi
- Department of Surgery, Gunma Children’s Medical Center, Shibukawa 377-8577, Japan;
| | - Makoto Suzuki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Department of Surgery, Iwate Medical University School of Medicine, Morioka 028-3695, Japan
| | - Sayaka Otake
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| |
Collapse
|
4
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Cai X, Duan X, Tang T, Cui S, Wu T. JMJD2A participates in cytoskeletal remodeling to regulate castration-resistant prostate cancer docetaxel resistance. BMC Cancer 2023; 23:423. [PMID: 37165308 PMCID: PMC10170801 DOI: 10.1186/s12885-023-10915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND To investigate underlying mechanism of JMJD2A in regulating cytoskeleton remodeling in castration-resistant prostate cancer (CRPC) resistant to docetaxel. METHODS Tissue samples from CRPC patients were collected, and the expression of JMJD2A, miR-34a and cytoskeleton remodeling-related proteins were evaluated by qPCR, western blot and immunohistochemistry, and pathological changes were observed by H&E staining. Further, JMJD2A, STMN1 and TUBB3 were knocked down using shRNA in CRPC cell lines, and cell viability, apoptosis and western blot assays were performed. The interaction between miR-34a/STMN1/β3-Tubulin was analyzed with dual-luciferase reporter and co-immunoprecipitation assays. RESULTS In clinical experiment, the CRPC-resistant group showed higher expression of JMJD2A, STMN1, α-Tubulin, β-Tubulin and F-actin, and lower expression of miR-34a and β3-Tubulin compared to the sensitive group. In vitro experiments showed that JMJD2A could regulate cytoskeletal remodeling through the miR-34a/STMN1/β3-Tubulin axis. The expression of miR-34a was elevated after knocking down JMJD2A, and miR-34a targeted STMN1. The overexpression of miR-34a was associated with a decreased expression of STMN1 and elevated expression of β3-Tubulin, which led to the disruption of the microtubule network, decreased cancer cell proliferation, cell cycle arrest in the G0/G1 phase, and increased apoptosis. CONCLUSION JMJD2A promoted docetaxel resistance in prostate cancer cells by regulating cytoskeleton remodeling through the miR-34a/STMN1/β3-Tubulin axis.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Tielong Tang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Shu Cui
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China.
| |
Collapse
|
6
|
Shahverdi M, Darvish M. Exosomal microRNAs: A Diagnostic and Therapeutic Small Bio-molecule in Esophageal Cancer. Curr Mol Med 2023; 23:312-323. [PMID: 35319366 DOI: 10.2174/1566524022666220321125134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Esophageal cancer (EC) is one of the major causes of cancer-related death worldwide. EC is usually diagnosed at a late stage, and despite aggressive therapy, the five-year survival rate of patients remains poor. Exosomes play important roles in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, and invasion. They contain bioactive molecules such as lipids, proteins, and non-coding RNAs. Exosome research has recently concentrated on microRNAs, which are tiny noncoding endogenous RNAs that can alter gene expression and are linked to nearly all physiological and pathological processes, including cancer. It is suggested that deregulation of miRNAs results in cancer progression and directly induces tumor initiation. In esophageal cancer, miRNA dysregulation plays an important role in cancer prognosis and patients' responsiveness to therapy, indicating that miRNAs are important in tumorigenesis. In this review, we summarize the impact of exosomal miRNAs on esophageal cancer pathogenesis and their potential applications for EC diagnosis and therapy.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Cao S, Zhang W, Shen P, Xu R. Low STMN1 is associated with better prognosis in Asian patients with esophageal cancers: A meta-analysis. J Gastroenterol Hepatol 2020; 35:1668-1675. [PMID: 32250469 DOI: 10.1111/jgh.15062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 03/29/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIM The role of STMN1 in the development and progression of esophageal carcinoma is not yet determined. The present study aimed to systematically evaluate the correlation between STMN1 and prognosis of patients with esophageal carcinoma. METHODS Electronic databases including PubMed, Embase, the Cochrane library, and Chinese Biomedical Literature Database (CBM) were searched to identify studies evaluating the impact of STMN1 on the survival of esophageal cancer patients, without the language limitation. Two investigators screened the literature according to the inclusion and exclusion criteria and evaluated the quality of the included studies. The combined analysis was performed using RevMan 5.3 software. RESULTS A total of eight studies, involving 1240 esophageal carcinoma patients, were included in this retrospective design. Meta-analysis showed that esophageal carcinoma patients with low STMN1 had a superior overall survival and disease-free survival than those with high expression of STMN1. Compared with the high expression of STMN1, the 5-year survival rate was significantly higher in patients with low level of STMN1. Patients with high STMN1 expression had a higher risk of experiencing clinical grade III-IV disease, lymph node metastasis, and tumor invasion than those with low STMN1. CONCLUSION STMN1 is an indicator for the prognosis of esophageal carcinoma patients.
Collapse
Affiliation(s)
- Shasha Cao
- Department of Molecular Pathology, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Wei Zhang
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peihong Shen
- Department of Pathology, Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, China
| | - Ruiping Xu
- Department of Medicine, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
8
|
Su LL, Chang XJ, Zhou HD, Hou LB, Xue XY. Exosomes in esophageal cancer: A review on tumorigenesis, diagnosis and therapeutic potential. World J Clin Cases 2019; 7:908-916. [PMID: 31119136 PMCID: PMC6509264 DOI: 10.12998/wjcc.v7.i8.908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have been shown to reflect their parental cell origins, characteristics and biological behaviors. An increasing number of studies have demonstrated that exosomes play a role in the course of tumorigenesis, diagnosis, treatment and prognosis, although its precise functions in tumors are still unclear. Moreover, owing to a lack of a standard approach, exosomes and its contents have not yet been put into clinical practice successfully. This review aims to summarize the current knowledge on exosomes and its contents in esophageal cancer as well as the current limitations/challenges in its clinical application, which may provide a basis for an all-around understanding of the implementation of exosomes and exosomal contents in the surveillance and therapy of esophageal cancer.
Collapse
Affiliation(s)
- Lin-Lin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Jing Chang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Huan-Di Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Liu-Bing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Ying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
9
|
Zhang D, Dai L, Yang Z, Wang X, LanNing Y. Association of STMN1 with survival in solid tumors: A systematic review and meta-analysis. Int J Biol Markers 2019; 34:108-116. [PMID: 30966849 DOI: 10.1177/1724600819837210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prognostic value of Stathmin 1 (STMN1) in malignant solid tumors remains controversial. Thus, we conducted this meta-analysis to summarize the potential value of STMN1 as a biomarker for predicting overall survival in patients with solid tumor. METHODS We systematically searched eligible studies in PubMed, Web of Science, and EMBASE from the establishment date of these databases to September 2018. Hazard ratio (HR) and its 95% confidence interval (CI) was used to assess the association between STMN1 expression and overall survival. RESULTS A total of 25 studies with 4625 patients were included in this meta-analysis. Our combined results showed that high STMN1 expression was associated with poor overall survival in solid tumors (HR = 1.85, 95% CI 1.55, 2.21). In general, our subgroup and sensitivity analyses demonstrated that our combined results were stable and reliable. However, from the results of the subgroups we found that high STMN1 expression was not related to overall survival in colorectal cancer and endometrial cancer anymore, suggesting that much caution should be taken to interpret our combined result, and more studies with large sample sizes are required to further explore the prognostic value of STMN1 expression in the specific type of tumors, especially colorectal cancer and endometrial cancer. CONCLUSIONS STMN1 could serve as a prognostic biomarker and could be developed as a valuable therapeutic target for patients with solid tumors. However, due to the limitations of the present meta-analysis, this conclusion should be taken with caution. Further studies adequately designed are required to confirm our findings.
Collapse
Affiliation(s)
- Dan Zhang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - Lizhen Dai
- 3 Department of Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - ZengXi Yang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - XiChen Wang
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| | - Yin LanNing
- 1 Department of General Surgery, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
10
|
Li J, Qi Z, Hu YP, Wang YX. Possible biomarkers for predicting lymph node metastasis of esophageal squamous cell carcinoma: a review. J Int Med Res 2019; 47:544-556. [PMID: 30616477 PMCID: PMC6381495 DOI: 10.1177/0300060518819606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is the eighth most common form of cancer worldwide, and esophageal squamous cell carcinoma (ESCC) is a major type of esophageal cancer that arises from epithelial cells of the esophagus. Local lymph node metastasis (LNM) is a typical sign of failure for ESCC clinical treatments, and a link has been established between LNM and the aberrant expression of specific biomarkers. In this review, we summarize what is known about nine factors significantly associated with LNM in ESCC patients: phosphatase and tensin homolog (PTEN), mucin 1, vascular endothelial growth factor-C, tumor necrosis factor alpha-induced protein 8 (TNFAIP8), Raf-1 kinase inhibitory protein, stathmin (STMN1), metastasis-associated protein 1, caveolin-1, and interferon-induced transmembrane protein 3. The function of these nine proteins involves four major mechanisms: tumor cell proliferation, tumor cell migration and invasion, epithelium–mesenchymal transition, and chemosensitivity. The roles of PTEN, STMN1, and TNFAIP8 involve at least two of these mechanisms, and we suggest that they are possible biomarkers for predicting LNM in ESCC. However, further retrospective research into PTEN, STMN1, and TNFAIP8 is needed to test their possibilities as indicators.
Collapse
Affiliation(s)
- Juan Li
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Zhan Qi
- 2 Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Yuan-Ping Hu
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Yu-Xiang Wang
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
11
|
Ke B, Guo XF, Li N, Wu LL, Li B, Zhang RP, Liang H. Clinical significance of Stathmin1 expression and epithelial-mesenchymal transition in curatively resected gastric cancer. Mol Clin Oncol 2018; 10:214-222. [PMID: 30680197 PMCID: PMC6327211 DOI: 10.3892/mco.2018.1774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
In our previous study, it was demonstrated that the Stathmin1 (STMN1) is overexpressed in gastric cancer (GC) and that its high expression level is associated with tumor invasion and metastasis. Epithelial-mesenchymal transition (EMT) has also been shown to be critically involved in GC invasion and metastasis. Certain studies have indicated that STMN1 may serve an important role in the EMT process. However, the association between STMN1 expression and EMT-associated markers, as well as clinicopathological characteristics of patients with GC, remains unclear. The aim of the present study was to investigate the clinicopathological significance and prognostic value of STMN1 and EMT-associated markers in GC. The expression of STMN1 and the EMT-associated proteins E-cadherin (E-Cad) and vimentin (VIM) were analyzed by immunohistochemistry in GC and adjacent non-tumorous tissues. Associations between the expression of these markers and clinicopathological parameters were analyzed. The association between STMN1 expression and EMT-associated markers was investigated in the GC cell lines BGC-803 and SGC-7901. The results revealed that STMN1 was expressed in 63.5% of the 167 GC tissues, which was significantly higher than the percentage observed in the adjacent non-tumorous tissues (P=0.003). The STMN1 expression was demonstrated to be positively associated with the VIM levels (P=0.001) and negatively associated with the E-Cad levels (P=0.022) in GC tissues. The STMN1 expression was associated with Lauren's Classification, invasion depth, lymph node metastasis and pathological Tumor-Node-Metastasis (pTNM) stage (P<0.05). In the univariate analyses, the high E-Cad expression was a positive prognostic indicator for overall survival, whereas the high STMN1 and VIM expression was a negative indicator. COX multiple regression analysis demonstrated that the pTNM stage [hazard ratio (HR) 1.912, 95% confidence interval (CI): 1.282–2.851, P=0.001] and E-Cad expression (HR 0.403, 95% CI: 0.249–0.650, P=0.000) were independent prognostic factors. It was also revealed that the expression level of E-Cad decreased, while the expression level of VIM increased by depleting STMN1 levels in GC cells. The present results suggest that the aberrant expression of STMN1 may promote tumor progression through EMT in GC.
Collapse
Affiliation(s)
- Bin Ke
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiao-Fan Guo
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ning Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Liang-Liang Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ru-Peng Zhang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
12
|
Sulforaphane-N-Acetyl-Cysteine inhibited autophagy leading to apoptosis via Hsp70-mediated microtubule disruption. Cancer Lett 2018; 431:85-95. [DOI: 10.1016/j.canlet.2018.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
|
13
|
Zhang Z, Xie Q, He D, Ling Y, Li Y, Li J, Zhang H. Circular RNA: new star, new hope in cancer. BMC Cancer 2018; 18:834. [PMID: 30126353 PMCID: PMC6102867 DOI: 10.1186/s12885-018-4689-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circular RNAs are a new class of endogenous non-coding RNA that can function as crucial regulators of diverse cellular processes. The diverse types of circular RNAs with varying cytogenetics in cancer have also been reported. Circular RNAs can act as a microRNA sponge or through other mechanisms to regulate gene expression as either tumor inhibitors or accelerators, suggesting that circular RNAs can serve as newly developed biomarkers with clinic implications. Here, we summerized recent advances on circular RNAs in cancer and described a circular RNA network associated with tumorigenesis. The clinical implications of circular RNAs in cancer were also discussed in this paper. SHORT CONCLUSION Growing evidence has revealed the crucial regulatory roles of circular RNAs in cancer and the elucidation of functional mechanisms involving circular RNAs would be helpful to construct a circRNA-miRNA-mRNA regulatory network. Moreover, circular RNAs can be easily detected due to their relative stability, widespread expression, and abundance in exosomes, blood and saliva; thus, circular RNAs have potential as new and ideal clinical biomarkers in cancer.
Collapse
Affiliation(s)
- Zikang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Qing Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Dongmei He
- Department of Gynaecology and Obstetrics, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, 516000 China
| | - Yuan Ling
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Jiangbin Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| |
Collapse
|
14
|
Tan HT, Chung MCM. Label-Free Quantitative Phosphoproteomics Reveals Regulation of Vasodilator-Stimulated Phosphoprotein upon Stathmin-1 Silencing in a Pair of Isogenic Colorectal Cancer Cell Lines. Proteomics 2018; 18:e1700242. [PMID: 29460479 DOI: 10.1002/pmic.201700242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/10/2018] [Indexed: 02/06/2023]
Abstract
In this communication, we present the phosphoproteome changes in an isogenic pair of colorectal cancer cell lines, viz., the poorly metastatic HCT-116 and the highly metastatic derivative E1, upon stathmin-1 (STMN1) knockdown. The aim was to better understand how the alterations of the phosphoproteins in these cells are involved in cancer metastasis. After the phosphopeptides were enriched using the TiO2 HAMMOC approach, comparative proteomics analysis was carried out using sequential window acquisition of all theoretical mass spectra-MS. Following bioinformatics analysis using MarkerView and OneOmics platforms, we identified a list of regulated phosphoproteins that may play a potential role in signaling, maintenance of cytoskeletal structure, and focal adhesion. Among these phosphoproteins, was the actin cytoskeleton regulator protein, vasodilator-stimulated phosphoprotein (VASP), where its change in phosphorylation status was found to be concomitant with STMN1-associated roles in metastasis. We further showed that silencing of stathmin-1 altered the expression, subcellular localization and phosphorylation status of VASP, which suggested that it might be associated with remodeling of the cell cytoskeleton in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maxey Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Yan L, Dong X, Gao J, Liu F, Zhou L, Sun Y, Zhao X. A novel rapid quantitative method reveals stathmin-1 as a promising marker for esophageal squamous cell carcinoma. Cancer Med 2018; 7:1802-1813. [PMID: 29577639 PMCID: PMC5943482 DOI: 10.1002/cam4.1449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 12/18/2022] Open
Abstract
Stathmin‐1 is a microtubule depolymerization protein that regulates cell division, growth, migration, and invasion. Overexpression of stathmin‐1 has been observed to be associated with metastasis, poor prognosis, and chemoresistance in various human cancers. Our previous studies found that serum stathmin‐1 was significantly elevated in patients with esophageal squamous cell carcinoma (ESCC) by ELISAs. Here, we constructed high‐affinity monoclonal antibodies and then developed a competitive AlphaLISA for rapid, accurate quantitation of stathmin‐1 in serum. Compared to ELISA, our homogeneous AlphaLISA showed better sensitivity and accuracy, a lower limit of detection, and a wider linear range. The measurements of nearly 1000 clinical samples showed that serum stathmin‐1 level increased dramatically in patients with squamous cell carcinoma (SCC), especially in ESCC, with a sensitivity and a specificity of 81% and 94%, respectively. Even for early stage ESCC, stathmin‐1 achieved an area under the receiver operating characteristic curve (AUC) of 0.88. Meanwhile, raised concentrations of stathmin‐1 were associated with lymph node metastasis and advanced cancer stage. Notably, various types of SCC showed significantly higher AUCs in serum stathmin‐1 detection compared to adenocarcinoma. Furthermore, we confirmed that stathmin‐1 was enriched in the oncogenic exosomes, which can explain the reason why it enters into the blood to serve as a tumor surrogate. In conclusion, this large‐scale and systematic study of serum stathmin‐1 measured by our newly established AlphaLISA showed that stathmin‐1 is a very promising diagnostic and predictive marker for SCC in the clinic, especially for ESCC.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiu Dong
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|