1
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Zhao B, Luo J, Yu T, Zhou L, Lv H, Shang P. Anticancer mechanisms of metformin: A review of the current evidence. Life Sci 2020; 254:117717. [PMID: 32339541 DOI: 10.1016/j.lfs.2020.117717] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Metformin, a US Food and Drug Administration-approved "star" drug used for diabetes mellitus type 2, has become a topic of increasing interest to researchers due to its anti-neoplastic effects. Growing evidence has demonstrated that metformin may be a promising chemotherapeutic agent, and several clinical trials of metformin use in cancer treatment are ongoing. However, the anti-neoplastic effects of metformin and its underlying mechanisms have not been fully elucidated. In this review, we present the newest findings on the anticancer activities of metformin, and highlight its diverse anticancer mechanisms. Several clinical trials, as well as the limitations of the current evidence are also demonstrated. This review explores the crucial roles of metformin and provides supporting evidence for the repurposing of metformin as a treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jie Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tongyao Yu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Liangfu Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
3
|
Zhou X, Zhang P, Wang Q, Ji N, Xia S, Ding Y, Wang Q. Metformin ameliorates experimental diabetic periodontitis independently of mammalian target of rapamycin (mTOR) inhibition by reducing NIMA‐related kinase 7 (Nek7) expression. J Periodontol 2019; 90:1032-1042. [PMID: 30945296 DOI: 10.1002/jper.18-0528] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Xinyi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Peng Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Qian Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Ning Ji
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Sisi Xia
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Yi Ding
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| | - Qi Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of ProsthodonticsWest China Hospital of StomatologySichuan University Chengdu China
| |
Collapse
|