1
|
Prakash J, Shaked Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discov 2024; 14:1375-1388. [PMID: 39091205 PMCID: PMC11294818 DOI: 10.1158/2159-8290.cd-24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024]
Abstract
The extracellular matrix (ECM) is an abundant noncellular component of most solid tumors known to support tumor progression and metastasis. The interplay between the ECM and cancer therapeutics opens up new avenues in understanding cancer biology. While the ECM is known to protect the tumor from anticancer agents by serving as a biomechanical barrier, emerging studies show that various cancer therapies induce ECM remodeling, resulting in therapy resistance and tumor progression. This review discusses critical issues in this field including how the ECM influences treatment outcome, how cancer therapies affect ECM remodeling, and the challenges associated with targeting the ECM. Significance: The intricate relationship between the extracellular matrix (ECM) and cancer therapeutics reveals novel insights into tumor biology and its effective treatment. While the ECM may protect tumors from anti-cancer agents, recent research highlights the paradoxical role of therapy-induced ECM remodeling in promoting treatment resistance and tumor progression. This review explores the key aspects of the interplay between ECM and cancer therapeutics.
Collapse
Affiliation(s)
- Jai Prakash
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Rappaport-Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Grünewald TGP, Postel-Vinay S, Nakayama RT, Berlow NE, Bolzicco A, Cerullo V, Dermawan JK, Frezza AM, Italiano A, Jin JX, Le Loarer F, Martin-Broto J, Pecora A, Perez-Martinez A, Tam YB, Tirode F, Trama A, Pasquali S, Vescia M, Wortmann L, Wortmann M, Yoshida A, Webb K, Huang PH, Keller C, Antonescu CR. Translational Aspects of Epithelioid Sarcoma: Current Consensus. Clin Cancer Res 2024; 30:1079-1092. [PMID: 37916971 PMCID: PMC10947972 DOI: 10.1158/1078-0432.ccr-23-2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∼50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- U981 INSERM, ERC StG team, Gustave Roussy, Villejuif, France
| | - Robert T Nakayama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Andrea Bolzicco
- Patients association 'Orchestra per la vita' Aps, Rome, Italy
- Patients association: 'MC4 in corsa per la vita!' ETS, Milan, Italy
| | - Vincenzo Cerullo
- Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anna Maria Frezza
- Department of Medical Oncology 2, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonie, Bordeaux, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Jia Xiang Jin
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Francois Le Loarer
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
- Department of Pathology, Institut Bergonie, Bordeaux, France
| | - Javier Martin-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital; University Hospital General de Villalba, and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - Andrew Pecora
- John Theurer Cancer Center, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Antonio Perez-Martinez
- Patients association: 'MC4 in corsa per la vita!' ETS, Milan, Italy
- Department of Pediatric Hemato-Oncology, Autonomous University of Madrid, Institute for Health Research, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Yuen Bun Tam
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Franck Tirode
- Université Claude Bernard, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Annalisa Trama
- Department of Epidemiology and Data Science; Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Lukas Wortmann
- Patients association "Smarcb1" e.V., Bergisch Gladbach, Germany
| | | | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kim Webb
- Patients association "Smarcb1" e.V., Bergisch Gladbach, Germany
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
- Sarcoma Unit, Royal Marsden Hospital, Belmont, United Kingdom
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
4
|
Watanabe T, Maeda K, Kato N, Seko H, Sugimura M, Sato Y, Ryuge A, Kato S, Kadomatsu K, Maruyama S, Kosugi T. Basigin is released in extracellular vesicles derived from the renal tubular epithelium in response to albuminuria. Nephrology (Carlton) 2023; 28:629-638. [PMID: 37562415 DOI: 10.1111/nep.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
AIM Irrespective of the cause, albumin/proteinuria induces tubulointerstitial damage and accelerates the progression of kidney diseases. Our series of studies demonstrated that proteinuria, an independent prognostic factor for chronic kidney disease (CKD), is correlated with urinary basigin/CD147 (Bsg) levels. We examined the morphology and origin of Bsg in the tubular lumen through the effects of filtered glucose and protein solutes on the tubules. METHODS Diabetic kidney disease (DKD) patients (N = 50) were treated with spironolactone 25 mg for 4 weeks or by conservative treatment. The associations between urinary Bsg values and clinical indicators were examined. Primary-cultured proximal tubular epithelial cells (PTECs) from human adult kidneys were exposed to high glucose or bovine serum albumin (BSA). RESULTS In patients with early phase DKD, urinary Bsg levels were closely correlated with proteinuria but not HbA1c. Full-length Bsg on extracellular vesicles (EVs) was investigated primarily in urine collected from DKD patients. EVs obtained from the urine of DKD patients included Bsg and SGLT2 proteins. Notably, spironolactone treatment concomitantly suppressed the release of Bsg-bearing EVs in correlation with decreased albuminuria. Exposure of PTECs to BSA (but not high glucose) enhanced the storage of supernatant Bsg in EVs despite the absence of exposure-specific changes in Bsg transcription. CONCLUSION Proteinuria induces the release of Bsg-bearing EVs derived from PTECs into the tubular lumen.
Collapse
Affiliation(s)
- Tomoharu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kayaho Maeda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Seko
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sugimura
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Sato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Ryuge
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sawako Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Institute for Glyco-core Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Patel NJ, Ashraf A, Chung EJ. Extracellular Vesicles as Regulators of the Extracellular Matrix. Bioengineering (Basel) 2023; 10:136. [PMID: 36829629 PMCID: PMC9952427 DOI: 10.3390/bioengineering10020136] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles secreted into the extracellular space by all cell types. EVs transfer their cargo which includes nucleic acids, proteins, and lipids to facilitate cell-to-cell communication. As EVs are released and move from parent to recipient cell, EVs interact with the extracellular matrix (ECM) which acts as a physical scaffold for the organization and function of cells. Recent work has shown that EVs can modulate and act as regulators of the ECM. This review will first discuss EV biogenesis and the mechanism by which EVs are transported through the ECM. Additionally, we discuss how EVs contribute as structural components of the matrix and as components that aid in the degradation of the ECM. Lastly, the role of EVs in influencing recipient cells to remodel the ECM in both pathological and therapeutic contexts is examined.
Collapse
Affiliation(s)
- Neil J. Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anisa Ashraf
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Quesnel A, Broughton A, Karagiannis GS, Filippou PS. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 2022; 41:789-801. [PMID: 35394580 DOI: 10.1007/s10555-022-10030-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell-derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Amy Broughton
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Tumor Microenvironment and Metastasis Program, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK. .,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
7
|
Garnier D, Ratcliffe E, Briand J, Cartron PF, Oliver L, Vallette FM. The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines 2022; 10:biomedicines10010112. [PMID: 35052791 PMCID: PMC8773192 DOI: 10.3390/biomedicines10010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and despite initial response to chemo- and radio-therapy, the persistence of glioblastoma stem cells (GSCs) unfortunately always results in tumor recurrence. It is now largely admitted that tumor cells recruit normal cells, including mesenchymal stem cells (MSCs), and components of their environment, to participate in tumor progression, building up what is called the tumor microenvironment (TME). While growth factors and cytokines constitute essential messengers to pass on signals between tumor and TME, recent uncovering of extracellular vesicles (EVs), composed of microvesicles (MVs) and exosomes, opened new perspectives to define the modalities of this communication. In the GBM context particularly, we investigated what could be the nature of the EV exchange between GSCs and MSCs. We show that GSCs MVs can activate MSCs into cancer-associated fibroblasts (CAFs)-like cells, that subsequently increase their secretion of exosomes. Moreover, a significant decrease in anti-tumoral miR-100-5p, miR-9-5p and let-7d-5p was observed in these exosomes. This clearly suggests a miRNA-mediated GBM tumor promotion by MSCs exosomes, after their activation by GBM MVs.
Collapse
Affiliation(s)
- Delphine Garnier
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France
- Correspondence:
| | - Edward Ratcliffe
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Joséphine Briand
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Lisa Oliver
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - François M. Vallette
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| |
Collapse
|
8
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
9
|
Solovyeva NI, Timoshenko OS, Kugaevskaya EV, Gureeva TA. Interstitial collagenase MMP-1 and EMMPRIN in cell lines and in clinical specimens of cervical squamous cell carcinoma. Mol Biol Rep 2021; 48:6879-6886. [PMID: 34495460 DOI: 10.1007/s11033-021-06689-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aim of this study was to elucidate the features of the expression of matrix metalloproteinases inducer-EMMPRIN (EMN) and matrix metalloproteinase 1 (MMP-1) in cell lines and in clinical samples of cervical squamous cell carcinoma (SCC). MATERIAL AND METHODS The study was carried out using RT-PCR, densitometry and immunohistochemical studies (IHC) on commercial cell lines Siha, Caski, transformed with HPV16; HeLa, and C33A transformed with HPV18, line C33A without HPV, and in clinical samples of SCC and morphologically normal tissue adjacent to the tumor. RESULTS The data obtained indicate that the expression of mRNA EMN and MMP-1 occurs in all cell lines at different levels. HPV type and number of genes copies had no effect on expression degree both EMN and MMP-1. Gene expression of EMN and MMP-1 has been investigated in tumor and normal tissues. MMP-1 expression in tumor tissue in SCC, as a rule, has been significantly increased (2-6 times) compared to normal tissue. It was found in 90% of tumor samples. It is known, that MMP-1 promotes the development of invasive and metastatic processes. EMN expression was lower in the tumor tissue than in normal tissue in most cases. An increase in EMN expression was noted only in some cases of SCC. CONCLUSION The data obtained indicate that MMP-1 can serve as a marker of the invasive potential of SCC. EMN, apparently, is not a major factor responsible for MMP-1 expression in SCC. Data are important for understanding the process of tumor development and may have prognostic value for the patient.
Collapse
Affiliation(s)
- Nina I Solovyeva
- V.N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121, Moscow, Russia.
| | - Olga S Timoshenko
- V.N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121, Moscow, Russia
| | - Elena V Kugaevskaya
- V.N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121, Moscow, Russia
| | - Tatyana A Gureeva
- V.N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121, Moscow, Russia
| |
Collapse
|
10
|
Cao M, Mao Z, Peng M, Zhao Q, Sun X, Yan J, Yuan W. Extracellular cyclophilin A induces cardiac hypertrophy via the ERK/p47phox pathway. Mol Cell Endocrinol 2020; 518:110990. [PMID: 32805334 DOI: 10.1016/j.mce.2020.110990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Excessive reactive oxygen species (ROS) are a critical driver of cardiac hypertrophy developing into heart failure. Cyclophilin A (CyPA), a member of the cyclophilin family, has been highlighted as a main secreted ROS-induced factor. The mechanism by which extracellular CyPA interacts with cardiomyocytes is unclear. We showed that extracellular CyPA is upregulated in cardiac hypertrophy rats and expressed around hypertrophic cardiomyocytes. Cell experiments further confirmed that extracellular CyPA induces H9c2 cardiomyocytes hypertrophy via ROS generation. Extracellular CyPA-induced ROS is derived from nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and extracellular CyPA activates p47phox membrane translocation through ERK1/2 pathway. When blocking extracellular matrix metalloproteinase inducer (EMMPRIN), most of the extracellular CyPA effects were significantly inhibited. The current study shows that extracellular CyPA is one of the key factors linking oxidative stress and cardiac hypertrophy, and may be a potential target for cardiac hypertrophy therapy.
Collapse
Affiliation(s)
- Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Ziqi Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Meiling Peng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qianru Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
11
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
12
|
Ramirez-Carracedo R, Tesoro L, Hernandez I, Diez-Mata J, Botana L, Saura M, Sanmartin M, Zamorano JL, Zaragoza C. Ivabradine-Stimulated Microvesicle Release Induces Cardiac Protection against Acute Myocardial Infarction. Int J Mol Sci 2020; 21:E6566. [PMID: 32911752 PMCID: PMC7555962 DOI: 10.3390/ijms21186566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Ivabradine can reduce heart rate through inhibition of the current I(f) by still unexplored mechanisms. In a porcine model of ischemia reperfusion (IR), we found that treatment with 0.3 mg/kg Ivabradine increased plasma release of microvesicles (MVs) over Placebo, as detected by flow cytometry of plasma isolated from pigs 7 days after IR, in which a tenfold increase of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) containing (both high and low-glycosylated) MVs, was detected in response to Ivabradine. The source of MVs was investigated, finding a 37% decrease of CD31+ endothelial cell derived MVs, while CD41+ platelet MVs remained unchanged. By contrast, Ivabradine induced the release of HCN4+ (mostly cardiac) MVs. While no differences respect to EMMPRIN as a cargo component were found in endothelial and platelet derived MVs, Ivabradine induced a significant release of EMMPRIN+/HCN4+ MVs by day 7 after IR. To test the role of EMMPRIN+ cardiac MVs (EMCMV), H9c2 cell monolayers were incubated for 24 h with 107 EMCMVs, reducing apoptosis, and increasing 2 times cell proliferation and 1.5 times cell migration. The in vivo contribution of Ivabradine-induced plasma MVs was also tested, in which 108 MVs isolated from the plasma of pigs treated with Ivabradine or Placebo 7 days after IR, were injected in pigs under IR, finding a significant cardiac protection by increasing left ventricle ejection fraction and a significant reduction of the necrotic area. In conclusion ivabradine induces cardiac protection by increasing at least the release of EMMPRIN containing cardiac microvesicles.
Collapse
Affiliation(s)
- Rafael Ramirez-Carracedo
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
| | - Laura Tesoro
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
| | - Ignacio Hernandez
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
| | - Javier Diez-Mata
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
| | - Laura Botana
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
| | - Marta Saura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
- Systems Biology Department, Facultad de Medicina Universidad de Alcalá, IRYCIS, 28772 Alcala de Henares, Spain
| | - Marcelo Sanmartin
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
- Cardiology Department, IRYCIS, 28034 Madrid, Spain
| | - Jose Luis Zamorano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
- Cardiology Department, IRYCIS, 28034 Madrid, Spain
| | - Carlos Zaragoza
- Cardiology Department, Universidad Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain; (R.R.-C.); (L.T.); (I.H.); (J.D.-M.); (L.B.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (M.S.); (M.S.); (J.L.Z.)
| |
Collapse
|
13
|
Miyazaki M, Aoki M, Okado Y, Koga K, Hamasaki M, Nakagawa T, Sakata T, Nabeshima K. Highly expressed tumoral emmprin and stromal CD73 predict a poor prognosis for external auditory canal carcinoma. Cancer Sci 2020; 111:3045-3056. [PMID: 32473077 PMCID: PMC7419056 DOI: 10.1111/cas.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma of the external auditory canal (SCC-EAC) is rare and has a poor prognosis. The SCC-EAC cases with high-grade tumor budding (TB) or poorly differentiated clusters (PDCs) are associated with shorter survival than those with low-grade TB or PDCs. Extracellular matrix metalloproteinase inducer (emmprin) is a protein expressed in tumor cells that stimulates the production of MMP-2 by stromal fibroblasts to facilitate tumor invasion. Recently, we reported that emmprin forms a complex with CD73 to regulate MMP-2 production from fibroblasts in vitro. Here, we examined the association of emmprin and CD73 expression with TB or PDCs as well as with survival in 34 biopsy specimens of SCC-EAC patients. High tumoral emmprin expression was associated with high-grade TB, whereas high stromal CD73 expression was associated with high-grade PDCs. Furthermore, concurrent elevated expression of tumoral emmprin and stromal CD73 was determined to be an independent poor prognostic factor. In immunoprecipitation analyses, complex formation between emmprin and CD73 was demonstrated in vitro. Production of MMP-2 from fibroblasts was more abundant when cocultured with tumor cells than from fibroblasts cultured alone. Furthermore, MMP-2 production was reduced by the transfection of CD73 siRNA in fibroblasts cocultured with tumor cells. The colocalization of emmprin and CD73 was enhanced in not only the peripheral cells of the tumor cell clusters that interact with fibroblasts but also in the cells of intratumor clusters. Overall, this study provides novel insights into the roles of emmprin, CD73, and MMP-2 in tumor invasiveness.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Yasuko Okado
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Sakata
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| |
Collapse
|
14
|
Timoshenko OS, Gureeva TA, Kugaevskaya EV, Zavalishina LE, Andreeva YY, Solovyeva NI. [The expression of EMMPRIN and the matrix metalloproteinase MMP-1 in the cervix uteri and corpus uteri in cervical squamous cell carcinoma]. Arkh Patol 2019; 81:34-40. [PMID: 31851190 DOI: 10.17116/patol20198106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the features of expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase MMP-1 in the cervix uteri and corpus uteri in cervical squamous cell carcinoma (CSCC). MATERIAL AND METHODS The investigation was conducted using the surgical material obtained after hysterectomy in patients diagnosed as having CSCC. RT-PCR, immunohistochemistry (IHC), and enzymatic assays were used. RESULTS The high expression of EMMPRIN and MMP-1 in CSCC was found not only in cervical carcinoma, but also in the stroma and epithelium of the cervix uteri and corpus uteri outside the tumor, whereas the level of MMP-1 expression in the morphologically intact tissue was significantly lower than in the tumor, while that of EMMPRIN gene expression did not differ substantially. CONCLUSION The expression of EMMPRIN and MMP-1 in CSCC occurs in both the tumor and the morphologically intact tissue, which may suggest that the invasive potential of tumor may increase and therefore have prognostic value.
Collapse
Affiliation(s)
- O S Timoshenko
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - T A Gureeva
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Kugaevskaya
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - L E Zavalishina
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| | - N I Solovyeva
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
15
|
Aoki M, Koga K, Miyazaki M, Hamasaki M, Koshikawa N, Oyama M, Kozuka-Hata H, Seiki M, Toole BP, Nabeshima K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019; 19:912. [PMID: 31510956 PMCID: PMC6739984 DOI: 10.1186/s12885-019-6127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Interaction between cancer cells and fibroblasts mediated by extracellular matrix metalloproteinase inducer (emmprin, CD147) is important in the invasion and proliferation of cancer cells. However, the exact mechanism of emmprin mediated stimulation of matrix metalloprotease-2 (MMP-2) production from fibroblasts has not been elucidated. Our previous studies using an inhibitory peptide against emmprin suggested the presence of a molecule on the cell membrane which forms a complex with emmprin. Here we show that CD73 expressed on fibroblasts interacts with emmprin and is a required factor for MMP-2 production in co-cultures of sarcoma cells with fibroblasts. Methods CD73 along with CD99 was identified by mass spectrometry analysis as an emmprin interacting molecule from a co-culture of cancer cells (epithelioid sarcoma cell line FU-EPS-1) and fibroblasts (immortalized fibroblasts cell line ST353i). MMP-2 production was measured by immunoblot and ELISA. The formation of complexes of CD73 with emmprin was confirmed by immunoprecipitation, and their co-localization in tumor cells and fibroblasts was shown by fluorescent immunostaining and proximity ligation assays. Results Stimulated MMP-2 production in co-culture of cancer cells and fibroblasts was completely suppressed by siRNA knockdown of CD73, but not by CD99 knockdown. MMP-2 production was not suppressed by CD73-specific enzyme inhibitor (APCP). However, MMP-2 production was decreased by CD73 neutralizing antibodies, suggesting that CD73-mediated suppression of MMP-2 production is non-enzymatic. In human epithelioid sarcoma tissues, emmprin was immunohistochemically detected to be mainly expressed in tumor cells, and CD73 was expressed in fibroblasts and tumor cells: emmprin and CD73 were co-localized predominantly on tumor cells. Conclusion This study provides a novel insight into the role of CD73 in emmprin-mediated regulation of MMP-2 production.
Collapse
Affiliation(s)
- M Aoki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - K Koga
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Miyazaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - N Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - B P Toole
- Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - K Nabeshima
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
16
|
Kumar D, Vetrivel U, Parameswaran S, Subramanian KK. Structural insights on druggable hotspots in CD147: A bull's eye view. Life Sci 2019; 224:76-87. [DOI: 10.1016/j.lfs.2019.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
|
17
|
Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2019; 303:1584-1589. [DOI: 10.1002/ar.24089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Damien Guindolet
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| | - Eric E. Gabison
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| |
Collapse
|
18
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|