1
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Wang T, Liu M, Jia M. Integrated Bioinformatic Analysis of the Correlation of HOXA10 Expression with Survival and Immune Cell Infiltration in Lower Grade Glioma. Biochem Genet 2023; 61:238-257. [PMID: 35836029 DOI: 10.1007/s10528-022-10258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Homeobox A10 (HOXA10) encodes a transcription factor that regulates developmental processes. Whether HOXA10 mRNA levels in lower grade glioma (LGG) correlate with survival and immune cell infiltration has not been evaluated. The differential expression of HOXA10 in different tumors and their corresponding normal tissues was evaluated by exploring public datasets. The correlations between HOXA10 and survival, tumor immune cell infiltration, diverse gene mutation characteristics, and tumor mutation burden in LGG were also investigated using several independent datasets. Pathway enrichment analysis was conducted to identify HOXA10-associated signaling pathways. We found that HOXA10 expression levels did not significantly differ between LGG tumors and normal tissues. Upon assessing the association between HOXA10 expression and immune cell infiltration in LGG, as expected, HOXA10 gene mRNA levels were positively associated with B-cell and dendritic cell infiltration levels in public online datasets. Different HOXA10 expression groups showed diverse gene mutation characteristics and TMB, and low HOXA10 expression was closely related to improved LGG patient survival. Pathway enrichment analysis of HOXA10-associated genes indicated that the cell cycle signaling pathway may participate in affecting the outcomes of LGG patients. Our findings showed that HOXA10 expression was associated with LGG prognosis and tumor immunity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Mingqian Liu
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| |
Collapse
|
3
|
Li L, Ye Z, Yang S, Yang H, Jin J, Zhu Y, Tao J, Chen S, Xu J, Liu Y, Liang W, Wang B, Yang M, Huang Q, Chen Z, Li W, Fan JB, Liu D. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin Epigenetics 2021; 13:185. [PMID: 34620221 PMCID: PMC8499516 DOI: 10.1186/s13148-021-01163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. The alteration of DNA methylation plays a major role in the development of lung cancer. Methylation biomarkers become a possible method for lung cancer diagnosis. RESULTS We identified eleven lung cancer-specific methylation markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, and PTGER4-2), which could differentiate benign and malignant pulmonary nodules. The methylation levels of these markers are significantly higher in malignant tissues. In bronchoalveolar lavage fluid (BALF) samples, the methylation signals maintain the same differential trend as in tissues. An optimal 5-marker model for pulmonary nodule diagnosis (malignant vs. benign) was developed from all possible combinations of the eleven markers. In the test set (57 tissue and 71 BALF samples), the area under curve (AUC) value achieves 0.93, and the overall sensitivity is 82% at the specificity of 91%. In an independent validation set (111 BALF samples), the AUC is 0.82 with a specificity of 82% and a sensitivity of 70%. CONCLUSIONS This model can differentiate pulmonary adenocarcinoma and squamous carcinoma from benign diseases, especially for infection, inflammation, and tuberculosis. The model's performance is not affected by gender, age, smoking history, or the solid components of nodules.
Collapse
Affiliation(s)
- Lei Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhujia Ye
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Sai Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hao Yang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jing Jin
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jinsheng Tao
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Siyu Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jiehan Xu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Yanying Liu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Weihe Liang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Bo Wang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Mengzhu Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qiaoyun Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhiwei Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Jian-Bing Fan
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- Department of Pathology, School of Basic Medical Science, Southern Medical University, 1838 ShaTai Road, Guangzhou, 510515, China.
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Lei D, Yang WT, Zheng PS. HOXB4 inhibits the proliferation and tumorigenesis of cervical cancer cells by downregulating the activity of Wnt/β-catenin signaling pathway. Cell Death Dis 2021; 12:105. [PMID: 33479226 PMCID: PMC7820415 DOI: 10.1038/s41419-021-03411-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Homeobox B4 (HOXB4), which belongs to the homeobox (HOX) family, possesses transcription factor activity and has a crucial role in stem cell self-renewal and tumorigenesis. However, its biological function and exact mechanism in cervical cancer remain unknown. Here, we found that HOXB4 was markedly downregulated in cervical cancer. We demonstrated that HOXB4 obviously suppressed cervical cancer cell proliferation and tumorigenic potential in nude mice. Additionally, HOXB4-induced cell cycle arrest at the transition from the G0/G1 phase to the S phase. Conversely, loss of HOXB4 promoted cervical cancer cell growth both in vitro and in vivo. Bioinformatics analyses and mechanistic studies revealed that HOXB4 inhibited the activity of the Wnt/β-catenin signaling pathway by direct transcriptional repression of β-catenin. Furthermore, β-catenin re-expression rescued HOXB4-induced cervical cancer cell defects. Taken together, these findings suggested that HOXB4 directly transcriptional repressed β-catenin and subsequently inactivated the Wnt/β-catenin signaling pathway, leading to significant inhibition of cervical cancer cell growth and tumor formation.
Collapse
Affiliation(s)
- Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Li N, Gou JH, Xiong J, You JJ, Li ZY. HOXB4 promotes the malignant progression of ovarian cancer via DHDDS. BMC Cancer 2020; 20:222. [PMID: 32178630 PMCID: PMC7077141 DOI: 10.1186/s12885-020-06725-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Homeobox B4 (HOXB4) is correlated with poor prognosis of various cancer types. However, how HOXB4 promotes ovarian cancer (OV) progression remains unclear. Methods The Cancer Genome Atlas (TCGA) database indicated that a high level of HOXB4 in OV was correlated with poor prognosis. The biological functions of HOXB4 were confirmed by colony formation, migration, and invasion assays. The effect of HOXB4 on the expression of EMT cell markers was determined. The transcriptional target of HOXB4 was DHDDS, which was detected by a ChIP assay. A xenograft tumor model was generated in nude mice to detect the role of HOXB4 in tumor proliferation and metastasis. Results The results showed that HOXB4 protein levels were higher in OV tissues than in normal tissues and correlated with poor prognosis of OV. HOXB4 reduction inhibited the proliferation and invasion ability of OV cells in vitro. Conversely, these effects were enhanced by the upregulation of HOXB4 in OV cells. The binding of HOXB4 to two DNA motifs regulated DHDDS expression and contributed to the malignant progression of OV. The role of HOXB4 in contributing to tumor development in vivo was verified in mice. Further results indicated that HOXB4 induced Snail and Zeb1 expression. Conclusion Overall, HOXB4 overexpression was remarkably correlated with poor prognosis of OV. Mechanistically, HOXB4 enhances the proliferation and invasion of tumor cells by activating DHDDS, thereby promoting the malignant progression of OV.
Collapse
Affiliation(s)
- Na Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.,Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Jin-Hai Gou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiao Xiong
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Juan-Juan You
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Zheng-Yu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
6
|
Zhang Y, Yuan Z, Jiang Y, Shen R, Gu M, Xu W, Gu X. Inhibition of Splicing Factor 3b Subunit 1 (SF3B1) Reduced Cell Proliferation, Induced Apoptosis and Resulted in Cell Cycle Arrest by Regulating Homeobox A10 (HOXA10) Splicing in AGS and MKN28 Human Gastric Cancer Cells. Med Sci Monit 2020; 26:e919460. [PMID: 31927557 PMCID: PMC6977614 DOI: 10.12659/msm.919460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Small nuclear ribonucleoproteins (snRNPs) complexes of protein and noncoding RNA accumulate in the cell nucleus and catalyze pre-mRNA splicing to form the spliceosome. This study aimed to investigate the role of the spliceosome, splicing factor 3b subunit 1 (SF3B1), in AGS and MKN28 human gastric cancer cells in vitro, including gene knockdown with small interfering RNA (siRNA), and the use of the selective mRNA splicing inhibitor of SF3B1, pladienolide B. Material/Methods In AGS and MKN28 human gastric cancer cells, SF3B1expression was inhibited with siRNA and pladienolide B. Following SF3B1 inhibition, the Cell Counting Kit-8 (CCK-8) assay measured cell proliferation, and flow cytometry was used to investigate cell apoptosis and cell cycle arrest. The downstream HOXA10 and AKT pathways were studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. The presence of alternative splicing, or differential splicing, of single-gene coding for multiple proteins, was analyzed using The Cancer Genome Atlas (TCGA) SpliceSeq. Results Inhibition of SF3B1 reduced the proliferation rate of AGS and MKN28 human gastric cancer cells by inducing apoptosis and G2/M phase arrest. SF3B1 knockdown resulted in reduced homeobox A10 (HOXA10) mRNA expression and expression of long noncoding RNA (lncRNA) isoforms of HOXA10 (exons 1 and 3) and HOXA10 (exons 2 and 3). SF3B1 inhibition increased PTEN levels and reduced AKT protein phosphorylation. Conclusions In AGS and MKN28 human gastric cancer cells in vitro, inhibition of SF3B1 reduced cell proliferation, induced apoptosis, and resulted in cell cycle arrest by regulating HOXA10 splicing.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Yannan Jiang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Renbin Shen
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Menghui Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Wei Xu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
7
|
Dong CY, Cui J, Li DH, Li Q, Hong XY. HOXA10‑AS: A novel oncogenic long non‑coding RNA in glioma. Oncol Rep 2018; 40:2573-2583. [PMID: 30132568 PMCID: PMC6151881 DOI: 10.3892/or.2018.6662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system. Emerging evidence has demonstrated that long non‑coding RNAs (lncRNAs) serve a major role of regulation in various types of human cancer, including glioma. However, the biological roles of thousands of lncRNAs remain unknown and require further identification. The present study investigated the functional role of lncRNA‑HOXA10‑AS in glioma. The present study examined the expression patterns of HOXA10‑AS in glioma and normal brain tissues, as well as glioma cell lines and normal human astrocytes (HA) via reverse transcription‑quantitative polymerase chain reaction. HOXA10‑AS knockdown cells were generated using lentiviral short hairpin RNA against HOXA10‑AS in A172 and U251 glioma cells. Cell growth was assessed by MTT assay, and a flow cytometer was used to investigate cell proliferation, cell cycle distribution and cell apoptosis. Western blot analysis was performed to analyze the expression levels of apoptosis‑related proteins. HOXA10‑AS was significantly upregulated in glioma tissues and cell lines, and increased HOXA10‑AS expression levels were associated with higher grades of glioma. Knockdown of HOXA10‑AS inhibited glioma cell proliferation and increased cell apoptosis rates compared with the control cells. HOXA10‑AS markedly regulated the expression of the homeobox A10 (HOXA10) gene. Similarly, HOXA10 expression was increased with higher grades of glioma, and silencing of HOXA10 by small interfering RNA suppressed glioma cell proliferation and induced cell apoptosis. The results of the present study demonstrated that HOXA10‑AS promoted cell growth and survival through activation of HOXA10 gene expression in glioma, which may potentially act as a novel biomarker and therapeutic target for clinical assay development.
Collapse
Affiliation(s)
- Cheng-Ya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dian-He Li
- Department of Medicine, Northeast Normal University Hospital, Changchun, Jilin 130024, P.R. China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xin-Yu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
HOXB4 knockdown enhances the cytotoxic effect of paclitaxel and cisplatin by downregulating ABC transporters in ovarian cancer cells. Gene 2018; 663:9-16. [DOI: 10.1016/j.gene.2018.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022]
|