1
|
Tran HCM, Mbemba E, Mourot N, Faltas B, Rousseau A, Lefkou E, Sabbah M, van Dreden P, Gerotziafas G. The procoagulant signature of cancer cells drives fibrin network formation in tumor microenvironment and impacts its quality. Implications in cancer cell migration and the resistance to anticancer agents. Thromb Res 2024; 238:172-183. [PMID: 38723522 DOI: 10.1016/j.thromres.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Cancer cells induce hypercoagulability in the tumoral microenvironment by expressing Tissue Factor (TF). We aimed to study the impact of the procoagulant signature of cancer cells on the quality and structure of fibrin network. We also studied the impact of fibrin clot shield (FCS) on the efficiency of anticancer agents and the migration of cancer cells. MATERIALS AND METHODS Pancreatic cancer cells BXPC3 and breast cancer cells MDA-MB231 and MCF7, were cultured in the presence of normal Platelet Poor Plasma (PPP), diluted 10 % in conditioning media. Their potential to induce thrombin generation and their fibrinolytic activity were assessed. The structure of fibrin network was analyzed with Scanning Electron Microscopy (SEM). Cancer cells' mobility with fibrin clot and their interactions with fibrin were observed. Cancer cells were treated with paclitaxel (PTX) or 4-hydroxy-tamoxifen (4OHTam) in the presence or absence of FCS. RESULTS Cancer cells, in presence of PPP, induced fibrin network formation. High TF-expressing cancer cells (BXPC3 and MDA-MB23 cells), led to dense fibrin network with fine fibers. Low TF expressing cells MCF7 led to thick fibers. Exogenous TF enhanced the density of fibrin network formed by MCF7 cells. Cancer cells through their inherent profibrinolytic potential migrated within the fiber scaffold. The BXPC3 and MCF7 cells moved in clusters whereas the MDA-MB231 cells moved individually within the fibrin network. FCS decreased the efficiency of PTX and 4OHTam on the viability of cancer cells. CONCLUSIONS The procoagulant signature of cancer cells is determinant for the quality and structure of fibrin network in the microenvironment. Original SEM images show the architecture of "bird's nest"-like fibrin network being in touch with the cell membranes and surrounding cancer cells. Fibrin network constructed by triggering thrombin generation by cancer cells, provides a scaffold for cell migration. Fibrin clot shields protect cancer cells against PTX and 4OHTam.
Collapse
Affiliation(s)
- Huong Chi Mai Tran
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Elisabeth Mbemba
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Noémie Mourot
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Beshoy Faltas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Aurélie Rousseau
- Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Elmina Lefkou
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Michèle Sabbah
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Patrick van Dreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Thrombosis Center, Tenon - Saint Antoine University Hospital,Hôpitaux Universitaires Est Parisien, Assitance Publique Hôpitaix de Paris (AP-HP), 4 Rue de la Chine, 75020 Paris, France.
| |
Collapse
|
2
|
Yoo J, Kwon I, Kim S, Kim HM, Kim YD, Nam HS, Heo JH. Coagulation Factor Expression and Composition of Arterial Thrombi in Cancer-Associated Stroke. Stroke 2023; 54:2981-2989. [PMID: 37886852 DOI: 10.1161/strokeaha.123.044910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cancer is associated with an increased risk of stroke. Tumor cells activate platelets, induce a coagulation cascade, and generate thrombin. The composition of thrombi may reflect the mechanism of thrombosis, aiding the determination of the treatment strategy. Here, we investigated the composition and expression of coagulation factors in the thrombi of patients with cancer-associated stroke. METHODS Patients with stroke who underwent endovascular thrombectomy between September 2014 and June 2020 and whose cerebral thrombi were obtained were divided into those with cancer-associated stroke (cancer group) and propensity score-matched patients without cancer (control group), using 1:1 matching based on age and sex. Immunohistochemistry was performed of the thrombi, and the composition and expression of coagulation factors were compared between groups. RESULTS Among the 320 patients who underwent endovascular thrombectomy and who had thrombi obtained, this study included 23 patients with cancer and 23 matched controls. In both groups, the median age was 65 years, and 12 patients (52.2%) were men. Platelet composition was significantly higher in the cancer group than in the control group (median [interquartile range], 51.3% [28.0%-61.4%] versus 9.5% [4.8%-14.0%]; P<0.001). Among coagulation factors, thrombin (26.2% [16.2%-52.7%] versus 4.5% [1.3%-7.2%]; P<0.001) and tissue factors (0.60% [0.34%-2.06%] versus 0.37% [0.22%-0.60%]; P=0.024) were higher and factor X was lower (1.25% [0.39%-3.60%] versus 2.33% [1.67%-4.48%]; P=0.034) in the cancer group. There was a positive correlation between thrombin and platelets in the cancer group (r=0.666; P=0.001) but not in the control group (r=-0.167; P=0.627). CONCLUSIONS Cerebral thrombi in patients with cancer-associated stroke showed higher proportions of platelets, thrombin, and tissue factors, suggesting their key roles in arterial thrombosis in cancer and providing a therapeutic perspective for preventing stroke in patients with cancer-associated stroke.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital (J.Y.), Yonsei University College of Medicine, Korea
| | - Il Kwon
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, South Korea (I.K., S.K., Y.D.K., H.S.N., J.H.H.)
| | - Sungeun Kim
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, South Korea (I.K., S.K., Y.D.K., H.S.N., J.H.H.)
| | - Hye Min Kim
- Department of Pathology, Yongin Severance Hospital (H.M.K.), Yonsei University College of Medicine, Korea
| | - Young Dae Kim
- Department of Neurology, Severance Hospital (Y.D.K., H.S.N., J.H.H.), Yonsei University College of Medicine, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, South Korea (I.K., S.K., Y.D.K., H.S.N., J.H.H.)
| | - Hyo Suk Nam
- Department of Neurology, Severance Hospital (Y.D.K., H.S.N., J.H.H.), Yonsei University College of Medicine, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, South Korea (I.K., S.K., Y.D.K., H.S.N., J.H.H.)
| | - Ji Hoe Heo
- Department of Neurology, Severance Hospital (Y.D.K., H.S.N., J.H.H.), Yonsei University College of Medicine, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, South Korea (I.K., S.K., Y.D.K., H.S.N., J.H.H.)
| |
Collapse
|
3
|
Starodubtseva NL, Tokareva AO, Rodionov VV, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Kometova VV, Kukaev EN, Soares NC, Kovalev GI, Kononikhin AS, Frankevich VE, Nikolaev EN, Sukhikh GT. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study. Biomedicines 2023; 11:1786. [PMID: 37509426 PMCID: PMC10376786 DOI: 10.3390/biomedicines11071786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Department of Chemical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O Tokareva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Valeriy V Rodionov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Alexander G Brzhozovskiy
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna E Bugrova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vitaliy V Chagovets
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vlada V Kometova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Evgenii N Kukaev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Grigoriy I Kovalev
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey S Kononikhin
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir E Frankevich
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|
4
|
Wan J, Konings J, de Laat B, Hackeng TM, Roest M. Added Value of Blood Cells in Thrombin Generation Testing. Thromb Haemost 2021; 121:1574-1587. [PMID: 33742437 DOI: 10.1055/a-1450-8300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The capacity of blood to form thrombin is a critical determinant of coagulability. Plasma thrombin generation (TG), a test that probes the capacity of plasma to form thrombin, has improved our knowledge of the coagulation system and shows promising utility in coagulation management. Although plasma TG gives comprehensive insights into the function of pro- and anticoagulation drivers, it does not measure the role of blood cells in TG. In this literature review, we discuss currently available continuous TG tests that can reflect the involvement of blood cells in coagulation, in particular the fluorogenic assays that allow continuous measurement in platelet-rich plasma and whole blood. We also provide an overview about the influence of blood cells on blood coagulation, with emphasis on the direct influence of blood cells on TG. Platelets accelerate the initiation and velocity of TG by phosphatidylserine exposure, granule content release and surface receptor interaction with coagulation proteins. Erythrocytes are also major providers of phosphatidylserine, and erythrocyte membranes trigger contact activation. Furthermore, leukocytes and cancer cells may be important players in cell-mediated coagulation because, under certain conditions, they express tissue factor, release procoagulant components and can induce platelet activation. We argue that testing TG in the presence of blood cells may be useful to distinguish blood cell-related coagulation disorders. However, it should also be noted that these blood cell-dependent TG assays are not clinically validated. Further standardization and validation studies are needed to explore their clinical usefulness.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Korff M, Imberg L, Will JM, Bückreiß N, Kalinina SA, Wenzel BM, Kastner GA, Daniliuc CG, Barth M, Ovsepyan RA, Butov KR, Humpf HU, Lehr M, Panteleev MA, Poso A, Karst U, Steinmetzer T, Bendas G, Kalinin DV. Acylated 1H-1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action. J Med Chem 2020; 63:13159-13186. [DOI: 10.1021/acs.jmedchem.0c01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Korff
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jonas M. Will
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Nico Bückreiß
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svetlana A. Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benjamin M. Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gregor A. Kastner
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Institute for Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Maximilian Barth
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ruzanna A. Ovsepyan
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Kirill R. Butov
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Mikhail A. Panteleev
- Laboratory of Translational Medicine, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Samory Mashela str. 1, GSP-7, 117997 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, 119991 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, 119991 Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudnyi, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
6
|
Fender AC, Dobrev D. The anticoagulation dilemma and future treatment avenues in patients with breast cancer and atrial fibrillation. Int J Cardiol 2020; 323:194-196. [PMID: 33011170 DOI: 10.1016/j.ijcard.2020.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Papageorgiou L, Alhaj Hussen K, Thouroude S, Mbemba E, Cost H, Garderet L, Elalamy I, Larsen A, Van Dreden P, Dimopoulos MA, Mohty M, Gerotziafas GT. Modelization of Blood-Borne Hypercoagulability in Myeloma: A Tissue-Factor-Bearing Microparticle-Driven Process. TH OPEN 2019; 3:e340-e347. [PMID: 31693008 PMCID: PMC6828570 DOI: 10.1055/s-0039-1700885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction
Hypercoagulability is a common blood alteration in newly diagnosed chemotherapy naïve patients with multiple myeloma. The identification of the procoagulant potential of cancer cells, which is principally related to tissue factor (TF) expression, attracts particular interest. The mechanisms by which myeloma plasma cells (MPCs) activate blood coagulation have been poorly investigated.
Aim
To identify the principal actors related with MPCs that boost thrombin generation (TG).
Methods
TF and annexin V expression by MPCs and MPC-derived microparticles (MPC-dMPs) was analyzed by flow cytometry. TF activity (TFa) and TF gene expression were also determined. TG in the presence of MPCs or MPC-dMPs was assessed with the calibrated automated thrombogram assay (CAT) in normal human PPP and in plasma depleted of factor VII or XII. TG was also assessed in plasma spiked with MPCs and MPC-dMPs.
Results
MPC-dMPs expressed approximately twofold higher levels of TF as compared with MPCs. The TFa expressed by MPC-dMPs was significantly higher compared with that expressed by MPCs. MPCs and MPC-dMPs enhanced TG of human plasma. TG was significantly higher with MPC-dMPs compared with MPCs.
Conclusion
MPCs indirectly induce blood-borne hypercoagulability through the release of MPC-dMPs rich in TF. Since MPCs, expressing low TFa, represent a weak procoagulant stimulus, the hypercoagulability at the microenvironment could be the resultant of MPC-dMPs rich in TF.
Collapse
Affiliation(s)
- Loula Papageorgiou
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France.,Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Kutaiba Alhaj Hussen
- Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France.,INSERM U976, Université Paris-Diderot, École Pratique des Hautes Études/PSL Research University, Institut de recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
| | - Sandrine Thouroude
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France
| | - Elisabeth Mbemba
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France
| | - Héléne Cost
- Clinical Research, Diagnostica Stago, Gennevilliers, France
| | - Laurent Garderet
- Research Group "Proliferation and Differentiation of Stem Cells" INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France
| | - Ismail Elalamy
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France.,Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Annette Larsen
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France
| | | | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad Mohty
- Department of Hematology and Cell Therapy, Saint Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Grigoris T Gerotziafas
- Research Group "Cancer, Haemostasis and Angiogenesis," INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Faculty of Medicine, Institut Universitaire de Cancérologie, Sorbonne Universities, Paris, France.,Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
8
|
Giaccherini C, Marchetti M, Masci G, Verzeroli C, Russo L, Celio L, Sarmiento R, Gamba S, Tartari CJ, Diani E, Vignoli A, Malighetti P, Spinelli D, Tondini C, Barni S, Giuliani F, Petrelli F, D'Alessio A, Gasparini G, De Braud F, Santoro A, Labianca R, Falanga A. Thrombotic biomarkers for risk prediction of malignant disease recurrence in patients with early stage breast cancer. Haematologica 2019; 105:1704-1711. [PMID: 31558668 PMCID: PMC7271573 DOI: 10.3324/haematol.2019.228981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022] Open
Abstract
In cancer patients, hypercoagulability is a common finding. It has been associated with an increased risk of venous thromboembolism, but also to tumor proliferation and progression. In this prospective study of a large cohort of breast cancer patients, we aimed to evaluate whether pre-chemotherapy abnormalities in hemostatic biomarkers levels: (i) are associated with breast cancer-specific clinico-pathological features; and (ii) can predict for disease recurrence. D-dimer, fibrinogen, prothrombin fragment 1+2, and FVIIa/antithrombin levels were measured in 701 early-stage resected breast cancer patients candidate to adjuvant chemotherapy and prospectively enrolled in the HYPERCAN study. Significant prognostic parameters for disease recurrence were identified by Cox regression multivariate analysis and used for generating a risk assessment model. Pre-chemotherapy D-dimer, fibrinogen, and pro-thrombin fragment 1+2 levels were significantly associated with tumor size and lymph node metastasis. After 3.4 years of follow up, 71 patients experienced a recurrence. Cox multivariate analysis identified prothrombin fragment 1+2, tumor size, and Luminal B HER2-negative or triple negative molecular subtypes as independent risk factors for disease recurrence. Based on these variables, we generated a risk assessment model that significantly differentiated patients at low- and high-risk of recurrence (cumulative incidence: 6.2 vs. 20.7%; Hazard Ratio=3.5; P<0.001). Our prospective clinical and laboratory data from the HYPERCAN study were crucial for generating a scoring model for assessing risk of disease recurrence in resected breast cancer patients, candidate to systemic chemotherapy. This finding stimulates future investigations addressing the role of plasma prothrombin fragment 1+2 in the management of breast cancer patients to provide the rationale for new therapeutic strategies. (The HYPERCAN study is registered at clinicaltrials.gov identifier 02622815.)
Collapse
Affiliation(s)
- Cinzia Giaccherini
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | | | - Cristina Verzeroli
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Laura Russo
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Luigi Celio
- Oncology Unit, IRCCS National Cancer Institute, Milan
| | | | - Sara Gamba
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Carmen J Tartari
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Erika Diani
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Alfonso Vignoli
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo
| | - Paolo Malighetti
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo
| | - Daniele Spinelli
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo
| | - Carlo Tondini
- Oncology Unit, Hospital Papa Giovanni XXIII, Bergamo
| | - Sandro Barni
- Oncology Unit, Hospital Treviglio-Caravaggio, Treviglio
| | | | | | - Andrea D'Alessio
- Medical Oncology and Internal Medicine, Policlinico San Marco, Zingonia-Bergamo
| | | | | | | | - Roberto Labianca
- Department Oncology Bergamo Province, Hospital Papa Giovanni XXIII, Bergamo
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo .,University of Milan Bicocca, School of Medicine and Surgery, Milan, Italy
| | | |
Collapse
|
9
|
Thrombin Generation and Cancer: Contributors and Consequences. Cancers (Basel) 2019; 11:cancers11010100. [PMID: 30654498 PMCID: PMC6356447 DOI: 10.3390/cancers11010100] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The high occurrence of cancer-associated thrombosis is associated with elevated thrombin generation. Tumour cells increase the potential for thrombin generation both directly, through the expression and release of procoagulant factors, and indirectly, through signals that activate other cell types (including platelets, leukocytes and erythrocytes). Furthermore, cancer treatments can worsen these effects. Coagulation factors, including tissue factor, and inhibitors of coagulation are altered and extracellular vesicles (EVs), which can promote and support thrombin generation, are released by tumour and other cells. Some phosphatidylserine-expressing platelet subsets and platelet-derived EVs provide the surface required for the assembly of coagulation factors essential for thrombin generation in vivo. This review will explore the causes of increased thrombin production in cancer, and the availability and utility of tests and biomarkers. Increased thrombin production not only increases blood coagulation, but also promotes tumour growth and metastasis and as a consequence, thrombin and its contributors present opportunities for treatment of cancer-associated thrombosis and cancer itself.
Collapse
|