1
|
Le HTT, Murugesan A, Candeias NR, Ramesh T, Yli-Harja O, Kandhavelu M. P2Y1 agonist HIC in combination with androgen receptor inhibitor abiraterone acetate impairs cell growth of prostate cancer. Apoptosis 2022; 27:283-295. [PMID: 35129730 PMCID: PMC8940814 DOI: 10.1007/s10495-022-01716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
P2Y receptors belong to the large superfamily of G-protein-coupled receptors and play a crucial role in cell death and survival. P2Y1 receptor has been identified as a marker for prostate cancer (PCa). A previously unveiled selective P2Y1 receptor agonist, the indoline-derived HIC (1-(1-((2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile), induces a series of molecular and biological responses in PCa cells PC3 and DU145, but minimal toxicity to normal cells. Here, we evaluated the combinatorial effect of HIC with abiraterone acetate (AA) targeted on androgen receptor (AR) on the inhibition of PCa cells. Here, the presence of HIC and AA significantly inhibited cell proliferation of PC3 and DU145 cells with time-dependent manner as a synerfistic combination. Moreover, it was also shown that the anticancer and antimetastasis effects of the combinratorial drugs were noticed through a decrease in colony-forming ability, cell migration, and cell invasion. In addition, the HIC + AA induced apoptotic population of PCa cells as well as cell cycle arrest in G1 progression phase. In summary, these studies show that the combination of P2Y1 receptor agonist, HIC and AR inhibitor, AA, effectively improved the antitumor activity of each drug. Thus, the combinatorial model of HIC and AA should be a novel and promising therapeutic strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Olli Yli-Harja
- Computational Systems Biology Research Group, Faculty of Medicine and Health Technology and BioMediTech, Tampere University, P.O.Box 553, 33101, Tampere, Finland
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA, 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland.
| |
Collapse
|
2
|
Dirgantara S, Insanu M, Fidrianny I. Medicinal Properties of Ant Nest Plant (Myrmecodia Genus): A Comprehensive Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND: The Myrmecodia genus belongs to the Rubiaceae family, which has the characteristic of an epiphytic plant. This genus spread from Malaysia, through the Philippines, Sumatra, Borneo, Java, New Guinea (Papua), Cape York to the Solomon Islands and Pacific region. It has been empirically proven to treat gout, inflammation, muscle pain relief, strengthen the body’s immunity, and cancer treatment.
AIM: This article reviewed the scientific work about the Myrmecodia genus concerning their traditional uses, phytochemical compounds, and pharmacological activities of Myrmecodia.
METHODS: The sources were from the scientific literature online database, including Science Direct, PubMed, and Google Scholar between 1978 and 2021. Furthermore, 112 articles were collected, while 61 full-text were assessed for eligibility.
RESULTS: The Myrmecodia extract has many pharmacological activities, namely antioxidant, antibacterial, cytotoxic, and anticancer.
CONCLUSION: Moreover, this review may be used as scientific literature for the next investigations on the genus Myrmecodia, especially regarding pharmacological properties such as in vitro and in vivo studies and isolation of the active compounds.
Collapse
|