1
|
Wang X, Tian Y, Lin H, Cao X, Zhang Z. Curcumin induces apoptosis in human hepatocellular carcinoma cells by decreasing the expression of STAT3/VEGF/HIF-1α signaling. Open Life Sci 2023; 18:20220618. [PMID: 37333486 PMCID: PMC10276545 DOI: 10.1515/biol-2022-0618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 06/20/2023] Open
Abstract
Curcumin is the most abundant derivative of turmeric rhizome. Although studies have proved that curcumin could inhibit the growth of tumors, its specific molecular mechanism has not yet been fully elucidated. This study aims to systematically elaborate the mechanisms of curcumin against hepatocellular carcinoma. The anti-tumor effect of curcumin was determined by the cell viability test. Flow cytometry was applied to examine the cell cycle and the apoptosis of cancer cells, and the cancer cell migration was detected by wound healing experiments. The expressions of signal transducers and activators of transcription 3 (STAT3), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) in cancer cells were examined by immunostaining and analyzed by the Image J analysis system. After treatment with curcumin, the apoptosis ratio of HepG2 cells increased significantly (P < 0.05). The proliferation of cancer cells was arrested at the S-phase cell cycle, and the migration of cancer cells was inhibited by the increasing concentration of curcumin, together with the decreasing expressions of STAT3, VEGF, and HIF-1α signaling pathways. The results indicate that curcumin could effectively inhibit the growth and migration of hepatocarcinoma cells by inducing cancer cell apoptosis, blocking the cancer cell cycle in the S phase, and reducing the expression of STAT3, VEGF, and HIF-1α signaling pathways.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, No. 6 Wenhui East Road, Weicheng District, Xianyang, 712082 Shaanxi, China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi, China
| | - Yu Tian
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, No. 6 Wenhui East Road, Weicheng District, Xianyang, 712082 Shaanxi, China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi, China
| | - Huanping Lin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, No. 6 Wenhui East Road, Weicheng District, Xianyang, 712082 Shaanxi, China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi, China
| | - Xiaolan Cao
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, No. 6 Wenhui East Road, Weicheng District, Xianyang, 712082 Shaanxi, China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi, China
| | - Zhendong Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, No. 6 Wenhui East Road, Weicheng District, Xianyang, 712082 Shaanxi, China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi, China
| |
Collapse
|
2
|
Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, Mir MA. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 2022; 39:106. [PMID: 35486263 DOI: 10.1007/s12032-022-01731-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Presently, breast cancer (BC) is one of the most common malignancies diagnosed and the leading cause of tumor-related deaths among women worldwide. Cell cycle dysregulation is one of the hallmarks of cancer, resulting in uncontrolled cell proliferation. Cyclin-dependent kinases (CDKs) are central to the cell cycle control system, and deregulation of these kinases leads to the development of malignancies, including breast cancer. CDKs and cyclins have been reported as crucial components involved in tumor cell proliferation and metastasis. Given the aggressive nature, tumor heterogeneity, and chemoresistance, there is an urgent need to explore novel targets and therapeutics to manage breast cancer effectively. Inhibitors targeting CDKs modulate the cell cycle, thus throwing light upon their therapeutic aspect where the progression of tumor cells could be inhibited. This article gives a comprehensive account of CDKs in breast cancer progression and metastasis and recent developments in the modulation of CDKs in treating malignancies. We have also explored the expression pattern and prognostic significance of CDKs in breast cancer patients. The article will also shed light on the Implications of CDK inhibition and TGF-β signaling in breast cancer.
Collapse
Affiliation(s)
- Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Shariqa Aisha
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | | | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, 65511, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
3
|
Lee DY, Lin HY, Ramasamy M, Kuo SC, Lee PC, Hsieh MT. Synthesis and Characterization of the Ethylene-Carbonate-Linked L-Valine Derivatives of 4,4-Dimethylcurcumin with Potential Anticancer Activities. Molecules 2021; 26:molecules26227050. [PMID: 34834146 PMCID: PMC8624457 DOI: 10.3390/molecules26227050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
Natural phenolic products from herbal medicines and dietary plants constitute the main source of lead compounds for the development of the new drug. 4,4-Dimethylcurcumin (DMCU) is a synthetic curcumin derivative and exhibits anticancer activities against breast, colon, lung, and liver cancers. However, further development of DMCU is limited by unfavorable compound properties such as very low aqueous solubility and moderate stability. To increase its solubility, we installed either or both of the ethylene-carbonate-linked L-valine side chains to DMCU phenolic groups and produced targeted 1-trifluoroacetic acid (1-TFA) and 2-trifluoroacetic acid (2-TFA) derivatives. The terminus L-valine of ethylene-carbonate-linked side chain is known to be a L-type amino acid transporter 1 (LAT1) recognition element and therefore, these two derivatives were expected to readily enter into LAT1-expressing cancer cells. In practice, 1-TFA or 2-TFA were synthesized from DMCU in four steps with 34–48% overall yield. Based on the corresponding LC-MS analysis, water solubility of DMCU, 1-TFA, and 2-TFA at room temperature (25 ± 1 °C) were 0.018, 249.7, and 375.8 mg/mL, respectively, indicating >10,000-fold higher solubility of 1-TFA and 2-TFA than DMCU. Importantly, anti-proliferative assay demonstrated that 2-TFA is a potent anti-cancer agent against LAT1-expressing lung cancer cells NCI-H460, NCI-H358, and A549 cells due to its high intracellular uptake compared to DMCU and 1-TFA. In this study, we logically designed and synthesized the targeted compounds, established the LC-MS analytical methods for evaluations of drug solubility and intracellular uptake levels, and showed improved solubility and anti-cancer activities of 2-TFA. Our results provide a strategical direction for the future development of curcuminoid-like phenolic compounds.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Hui-Yi Lin
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
| | | | - Sheng-Chu Kuo
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (P.-C.L.); (M.-T.H.)
| | - Min-Tsang Hsieh
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; (H.-Y.L.); (S.-C.K.)
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (P.-C.L.); (M.-T.H.)
| |
Collapse
|
4
|
Chiu YJ, Tsai FJ, Bau DT, Chang LC, Hsieh MT, Lu CC, Kuo SC, Yang JS. Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells. Oncol Rep 2021; 46:133. [PMID: 34013378 PMCID: PMC8144931 DOI: 10.3892/or.2021.8084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) behaves aggressively in the invasive and metastatic states. Our research group recently developed a novel curcumin derivative, (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2‑methoxy-4,1‑phenylene)bis(3-hydroxy2-hydroxymethyl)-2‑methyl propanoate (MTH‑3), and previous studies showed that MTH‑3 inhibits TNBC proliferation and induces apoptosis in vitro and in vivo with a superior bioavailability and absorption than curcumin. In the present study, the effects of MTH‑3 on TNBC cell invasion were examined using various assays and gelatin zymography, and western blot analysis. Treatment with MTH‑3 inhibited MDA‑MB‑231 cell invasion and migration, as shown by Transwell assay, 3D spheroid invasion assay, and wound healing assay. The results of the gelatin zymography experiments revealed that MTH‑3 decreased matrix metalloproteinase‑9 activity. The potential signaling pathways were revealed by next‑generation sequencing analysis, antibody microarray analysis and western blot analysis. In conclusion, the results of the present study show that, MTH‑3 inhibited tumor cell invasion through the MAPK/ERK/AKT signaling pathway and cell cycle regulatory cascade, providing significant information about the potential molecular mechanisms of the effects of MTH‑3 on TNBC.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University, Taichung 40402, Taiwan, R.O.C
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Da-Tian Bau
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Min-Tsang Hsieh
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40402, Taiwan, R.O.C
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
5
|
Aghaei M, Mirzaei M, Ghanadian M, Fallah M, Mahboodi R. 6-Methoxylated Flavonoids: Jacein, and 3-demethyljacein from Centaurea schmidii with Their Endoplasmic Reticulum Stress and Apoptotic Cell Death in Breast Cancer Cells Along with In-silico Analysis. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:417-432. [PMID: 34567171 PMCID: PMC8457730 DOI: 10.22037/ijpr.2020.113895.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In phytochemical analysis, Jacein derivatives: 5,7,4'-trihydroxy-3,6,3'-trimethoxyflavone-7(β)-D-glucopyranoside (1), and 3-demethyljacein: 3,5,7,4'-tetrahydroxy-6,3'-dimethoxyflavone-7(β)-D-glucopyranoside (2) were isolated from Campylopus schmidii (C. schmidii) for the first time. The structures were determined by interpretation of NMR, UV, and Mass spectra. To check the roles of ER stress and consequent apoptosis in MCF-7 cell by these compounds, UPR signaling pathway was further examined by analysis of expression of ER stress-related genes. In MTT assay, compounds 1-2 showed cytotoxicity activity against MCF-7 (A) and MDA-MB cells (B) with IC50 values (μM) of 1) 60.04 ± 7.98 (A), and > 200 (B); 2) 42.89 ± 1.91 (A), and 85.31 ± 2.68 (B). The Annexin/PI flow cytometry apoptosis of tested compounds 1-2 was increased significantly in a dose-dependent manner. For example, MCF-7 treatment at the concentration of 100 μM of compounds 1, 2 resulted in total apoptosis (early + late) of 42.04 (18.1 + 24.0), and 66.49 (2.7 + 63.8)%, respectively. Fluorescence microscopy analysis detected an increased protein aggregation, indicating induced ER stress with a marked increase in XBP-1, sXBP-1, ATF-4, and CHoP compared to untreated cells. In-silico characterization, suggested that Adenosine diphosphate site (A-site) and quercetin site (Q-Site) in IRE1a enzyme are both available interacting sites of a target for the investigated ligands but with different strengths of interactions. The results indicated that the ligand∼A-Site complexes are stronger than the ligand∼Q-Site complexes, but the already available ADP ligand in cells does not allow other ligands to interact with the A-Site and cause them to bond in Q-Site.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahmoud Mirzaei
- Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Moslem Fallah
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roodabeh Mahboodi
- Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, Iran.
| |
Collapse
|
6
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
7
|
Chiang JH, Tsai FJ, Hsu YM, Yin MC, Chiu HY, Yang JS. Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells. Oncol Rep 2020; 44:1415-1424. [PMID: 32700751 PMCID: PMC7448487 DOI: 10.3892/or.2020.7700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Allyl isothiocyanate (AITC), a bioactive phytochemical compound that is a constituent of dietary cruciferous vegetables, possesses promising chemopreventive and anticancer effects. However, reports of AITC exerting antitumor effects on apoptosis induction of colorectal cancer (CRC) cells in vitro are not well elucidated. The present study focused on the functional mechanism of the endoplasmic reticulum (ER) stress-based apoptotic machinery induced by AITC in human colorectal cancer HT-29 cells. Our results indicated that AITC decreased cell growth and number, reduced viability, and facilitated morphological changes of apoptotic cell death. DNA analysis by flow cytometry showed G2/M phase arrest, and alterations in the modulated protein levels caused by AITC were detected via western blot analysis. AITC also triggered vital intrinsic apoptotic factors (caspase-9/caspase-3 activity), disrupted mitochondrial membrane potential, and stimulated mitochondrial-related apoptotic molecules (e.g., cytochrome c, apoptotic protease activating factor 1, apoptosis-inducing factor, and endonuclease G). Additionally, AITC prompted induced cytosolic Ca2+ release and Ca2+-dependent ER stress-related signals, such as calpain 1, activating transcription factor 6α, glucose-regulated proteins 78 and 94, growth arrest- and DNA damage-inducible protein 153 (GADD153), and caspase-4. The level of reactive oxygen species (ROS) production was found to induce the hallmark of ER stress GADD153, proapoptotic marker caspase-3, and calpain activity after AITC treatment. Our findings showed for the first time that AITC induced G2/M phase arrest and apoptotic death via ROS-based ER stress and the intrinsic pathway (mitochondrial-dependent) in HT-29 cells. Overall, AITC may exert an epigenetic effect and is a potential bioactive compound for CRC treatment.
Collapse
Affiliation(s)
- Jo-Hua Chiang
- Department of Nursing, Chung‑Jen Junior College of Nursing, Health Sciences and Management, Chiayi County 62241, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40442, Taiwan, R.O.C
| |
Collapse
|
8
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
9
|
Johnson BD, Geldenhuys WJ, Hazlehurst LA. The Role of ERO1α in Modulating Cancer Progression and Immune Escape. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:103-115. [PMID: 33615311 PMCID: PMC7894644 DOI: 10.33696/cancerimmunol.2.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum oxidoreductin-1 alpha (ERO1α) was originally shown to be an endoplasmic reticulum (ER) resident protein undergoing oxidative cycles in concert with protein disulfide isomerase (PDI) to promote proper protein folding and to maintain homeostasis within the ER. ERO1α belongs to the flavoprotein family containing a flavin adenine dinucleotide utilized in transferring of electrons during oxidation-reduction cycles. This family is used to maintain redox potentials and protein homeostasis within the ER. ERO1α's location and function has since been shown to exist beyond the ER. Originally thought to exist solely in the ER, it has since been found to exist in the golgi apparatus, as well as in exosomes purified from patient samples. Besides aiding in protein folding of transmembrane and secretory proteins in conjunction with PDI, ERO1α is also known for formation of de novo disulfide bridges. Public databases, such as the Cancer Genome Atlas (TCGA) and The Protein Atlas, reveal ERO1α as a poor prognostic marker in multiple disease settings. Recent evidence indicates that ERO1α expression in tumor cells is a critical determinant of metastasis. However, the impact of increased ERO1α expression in tumor cells extends into the tumor microenvironment. Secretory proteins requiring ERO1α expression for proper folding have been implicated as being involved in immune escape through promotion of upregulation of programmed death ligand-1 (PD-L1) and stimulation of polymorphonuclear myeloid derived suppressor cells (PMN-MDSC's) via secretion of granulocytic colony stimulating factor (G-CSF). Hereby, ERO1α plays a pivotal role in cancer progression and potentially immune escape; making ERO1α an emerging attractive putative target for the treatment of cancer.
Collapse
Affiliation(s)
| | - Werner J. Geldenhuys
- WVU School of Pharmacy, Morgantown, WV, 25606, USA
- WVU Neuroscience Institute, Morgantown, WV, 25606, USA
| | - Lori A. Hazlehurst
- WVU Cancer Institute, Morgantown, WV 26506, USA
- WVU School of Pharmacy, Morgantown, WV, 25606, USA
| |
Collapse
|
10
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Bonaccorsi PM, Labbozzetta M, Barattucci A, Salerno TMG, Poma P, Notarbartolo M. Synthesis of Curcumin Derivatives and Analysis of Their Antitumor Effects in Triple Negative Breast Cancer (TNBC) Cell Lines. Pharmaceuticals (Basel) 2019; 12:E161. [PMID: 31717764 PMCID: PMC6958375 DOI: 10.3390/ph12040161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least equivalent pro-apoptotic effect than curcumin. The analysis of molecular mechanisms of action of the curcumin derivatives under study has highlighted that they decreased NF-κB transcriptional factor activity, and consequently the expression of some NF-κB targets. Our data confirmed once again that curcumin may represent a very good lead compound to design analogues with higher antitumor capacities and able to overcome drug resistance with respect to conventional ones, even in tumors difficult to treat as TNBC.
Collapse
Affiliation(s)
- Paola Maria Bonaccorsi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Manuela Labbozzetta
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| | - Anna Barattucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Tania Maria Grazia Salerno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (P.M.B.); (A.B.); (T.M.G.S.)
| | - Paola Poma
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy; (M.L.); (M.N.)
| |
Collapse
|
12
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
13
|
Cytotoxic Potential of the Coelomic Fluid Extracted from the Sea Cucumber Holothuria tubulosa against Triple-Negative MDA-MB231 Breast Cancer Cells. BIOLOGY 2019; 8:biology8040076. [PMID: 31600896 PMCID: PMC6955747 DOI: 10.3390/biology8040076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has demonstrated that the extracts of different holothurian species exert beneficial effects on human health. Triple negative breast cancers (TNBC) are highly malignant tumors that present a poor prognosis due to the lack of effective targeted therapies. In the attempt to identify novel compounds that might counteract TNBC cell growth, we studied the effect of the exposure of the TNBC cell line MDA-MB231 to total and filtered aqueous extracts of the coelomic fluid obtained from the sea cucumber Holoturia tubulosa, a widespread species in the Mediterranean Sea. In particular, we examined cell viability and proliferative behaviour, cell cycle distribution, apoptosis, autophagy, and mitochondrial metabolic/cell redox state. The results obtained indicate that both total and fractionated extracts are potent inhibitors of TNBC cell viability and growth, acting through both an impairment of cell cycle progression and mitochondrial transmembrane potential and a stimulation of cellular autophagy, as demonstrated by the increase of the acidic vesicular organelles and of the intracellular protein markers beclin-1, and total LC3 and LC3-II upon early exposure to the preparations. Identification of the water-soluble bioactive component(s) present in the extract merit further investigation aiming to develop novel prevention and/or treatment agents efficacious against highly metastatic breast carcinomas.
Collapse
|
14
|
Fontana F, Moretti RM, Raimondi M, Marzagalli M, Beretta G, Procacci P, Sartori P, Montagnani Marelli M, Limonta P. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif 2019; 52:e12576. [PMID: 30719778 PMCID: PMC6536411 DOI: 10.1111/cpr.12576] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Prostate cancer, after the phase of androgen dependence, may progress to the castration-resistant prostate cancer (CRPC) stage, with resistance to standard therapies. Vitamin E-derived tocotrienols (TTs) possess a significant antitumour activity. Here, we evaluated the anti-cancer properties of δ-TT in CRPC cells (PC3 and DU145) and the related mechanisms of action. MATERIALS AND METHODS MTT, Trypan blue and colony formation assays were used to assess cell viability/cell death/cytotoxicity. Western blot, immunofluorescence and MTT analyses were utilized to investigate apoptosis, ER stress and autophagy. Morphological changes were investigated by light and transmission electron microscopy. RESULTS We demonstrated that δ-TT exerts a cytotoxic/proapoptotic activity in CRPC cells. We found that in PC3 cells: (a) δ-TT triggers both the endoplasmic reticulum (ER) stress and autophagy pathways; (b) autophagy induction is related to the ER stress, and this ER stress/autophagy axis is involved in the antitumour activity of δ-TT; in autophagy-defective DU145 cells, only the ER stress pathway is involved in the proapoptotic effects of δ-TT; (c) in both CRPC cell lines, δ-TT also induces an intense vacuolation prevented by the ER stress inhibitor salubrinal and the protein synthesis inhibitor cycloheximide, together with increased levels of phosphorylated JNK and p38, supporting the induction of paraptosis by δ-TT. CONCLUSIONS These data demonstrate that apoptosis, involving ER stress and autophagy (in autophagy positive PC3 cells), and paraptosis are involved in the anti-cancer activity of δ-TT in CRPC cells.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanoItaly
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanoItaly
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanoItaly
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanoItaly
| | - Giangiacomo Beretta
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanoItaly
| | - Patrizia Procacci
- Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanoItaly
| | - Patrizia Sartori
- Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanoItaly
| | | | - Patrizia Limonta
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
15
|
Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani Marelli M. Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. Int J Mol Sci 2019; 20:ijms20040961. [PMID: 30813301 PMCID: PMC6412802 DOI: 10.3390/ijms20040961] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer represents a serious global health problem, and its incidence and mortality are rapidly growing worldwide. One of the main causes of the failure of an anticancer treatment is the development of drug resistance by cancer cells. Therefore, it is necessary to develop new drugs characterized by better pharmacological and toxicological profiles. Natural compounds can represent an optimal collection of bioactive molecules. Many natural compounds have been proven to possess anticancer effects in different types of tumors, but often the molecular mechanisms associated with their cytotoxicity are not completely understood. The endoplasmic reticulum (ER) is an organelle involved in multiple cellular processes. Alteration of ER homeostasis and its appropriate functioning originates a cascade of signaling events known as ER stress response or unfolded protein response (UPR). The UPR pathways involve three different sensors (protein kinase RNA(PKR)-like ER kinase (PERK), inositol requiring enzyme1α (IRE1) and activating transcription factor 6 (ATF6)) residing on the ER membranes. Although the main purpose of UPR is to restore this organelle's homeostasis, a persistent UPR can trigger cell death pathways such as apoptosis. There is a growing body of evidence showing that ER stress may play a role in the cytotoxicity of many natural compounds. In this review we present an overview of different plant-derived natural compounds, such as curcumin, resveratrol, green tea polyphenols, tocotrienols, and garcinia derivates, that exert their anticancer activity via ER stress modulation in different human cancers.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
16
|
Chen CF, Lu CC, Chiang JH, Chiu HY, Yang JS, Lee CY, Way TD, Huang HJ. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol Lett 2018; 16:6323-6330. [PMID: 30333889 PMCID: PMC6176463 DOI: 10.3892/ol.2018.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-targeting monoclonal antibody (mAb), is a novel targeted therapy for the treatment of patients with oral cancer. Cetuximab can be used in combination with chemotherapeutic agents to prolong the overall survival rates of patients with oral cancer. Curcumin is a traditional Chinese medicine, and it has been demonstrated to have growth-inhibiting effects on oral cancer cells. However, information regarding the combination of cetuximab and curcumin in drug-resistant oral cancer cells is lacking, and its underlying mechanism remains unclear. The purpose of the present study was to explore the oral anticancer effects of cetuximab combined with curcumin on cisplatin-resistant oral cancer CAR cell apoptosis in vitro. The results demonstrated that combination treatment synergistically potentiated the effect of cetuximab and curcumin on the suppression of cell viability and induction of apoptosis in CAR cells. Cetuximab and curcumin combination induced apoptosis and dramatically increased caspase-3 and caspase-9 activities compared with singular treatment. Combination treatment also markedly suppressed the protein expression levels of EGFR and mitogen-activated protein kinases (MAPKs) signaling (phosphorylation of ERK, JNK and p38). The results demonstrated that co-treatment with cetuximab and curcumin exerts synergistic oral anticancer effects on CAR cells through the suppression of the EGFR signaling by regulation of the MAPK pathway.
Collapse
Affiliation(s)
- Chin-Fu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi County 622, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Ying Lee
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C.,Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
17
|
Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, Yang Q, Chen C. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018; 23:molecules23071578. [PMID: 29966245 PMCID: PMC6099699 DOI: 10.3390/molecules23071578] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Curcumin (Cur) has been widely used in medicine, due to its antibacterial, anti-inflammatory, antioxidant, and antitumor effects. However, its clinic application is limited by its instability and poor solubility. In the present wok, curcumin was loaded into solid lipid nanoparticles (SLNs), in order to improve the therapeutic efficacy for breast cancer. The results measured using transmission electron microscopy (TEM) indicated that Cur-SLNs have a well-defined spherical shape; the size was about 40 nm with a negative surface charge. The drug loading and encapsulation efficiency in SLNs reached 23.38% and 72.47%, respectively. The Cur-SLNs showed a stronger cytotoxicity against SKBR3 cells. In vitro cellular uptake study demonstrated a high uptake efficiency of the Cur-SLNs by SKBR3 cells. Moreover, Cur-SLNs induced higher apoptosis in SKBR3 cells, compared to cells treated by free drug. In addition, Western blot analysis revealed that Cur-SLNs could promote the ratio of Bax/Bcl-2, but decreased the expression of cyclin D1 and CDK4. These results suggested that Cur-SLNs could be a potential useful chemotherapeutic formulation for breast cancer therapy.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Tiantian Chen
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Henan Xu
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Baihui Ren
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Xiaodan Cheng
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Rongrong Qi
- Department of Biotechnology, Bengbu Medical College, Bengbu 233030, China.
| | - Haibo Liu
- Department of Public Foundation, Bengbu Medical College, Bengbu 233030, China.
| | - Yueyue Wang
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Lei Yan
- AnHui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China.
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
18
|
Hu S, Xu Y, Meng L, Huang L, Sun H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 2018; 16:1266-1272. [PMID: 30116377 PMCID: PMC6090267 DOI: 10.3892/etm.2018.6345] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Curcumin is a natural compound that appears to be promising for clinical application, as it has been shown in in vitro and in vivo studies to exert antitumor effects by modulating multiple signaling cellular pathways. In the present study, the antitumor effects of curcumin and its mechanism of action were investigated in cultured breast cancer cells. The MTT assay was used to determine the effect of curcumin on breast cancer cell proliferation, flow cytometry was used to detect alterations of the cell cycle, and western blot analysis was used to determine the expression of signaling molecules involved in the cell cycle, proliferation and apoptosis. The results revealed that curcumin significantly inhibited the proliferation of various breast cancer cell lines, such as T47D, MCF7, MDA-MB-231 and MDA-MB-468, with an IC50 at the micromolar level, indicating the potent antitumor activity of curcumin. In-depth study of its mechanism of action revealed that curcumin induced cell cycle arrest at the G2/M phase and decreased the expression of the CDC25 and CDC2 proteins, while increasing the expression of P21. In addition, curcumin inhibited the phosphorylation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR), decreased B-cell lymphoma 2 (BCL2) and promoted BCL-2-associated X protein (BAX) and cleavage of caspase 3, subsequently inducing apoptosis of breast cancer cells. In conclusion, curcumin inhibited the proliferation of breast cancer cells and induced G2/M phase cell cycle arrest and apoptosis, which may be associated with the decrease of CDC25 and CDC2 and increase of P21 protein levels, as well as inhibition of the phosphorylation of Akt/mTOR and induction of the mitochondrial apoptotic pathway. The findings of the present study may provide a basis for the further study of curcumin in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shan Hu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - He Sun
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|