1
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Shi P, Lin Z, Song Y, Li Z, Zeng M, Luo L, Cao Y, Zhu X. Chemotherapy-initiated cysteine-rich protein 61 decreases acute B-lymphoblastic leukemia chemosensitivity. J Cancer Res Clin Oncol 2024; 150:159. [PMID: 38530432 PMCID: PMC10965586 DOI: 10.1007/s00432-024-05692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Chemoresistance is a major challenge for acute lymphoblastic leukemia (ALL) treatment. Cysteine-rich protein 61 (Cyr61) plays an important role in drug resistance modulation of tumor cells, and Cyr61 levels are increased in the bone marrow of patients with ALL and contribute to ALL cell survival. However, the effect of Cyr61 on B cell acute lymphoblastic leukemia (B-ALL) cell chemosensitivity and the regulatory mechanisms underlying Cyr61 production in bone marrow remain unknown. METHODS Nalm-6 and Reh human B-ALL cell lines were used in this study. Cyr61 levels were assessed using quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay. The effect of Cyr61 on B-ALL cell chemosensitivity to daunorubicin (DNR) was evaluated using cell viability and flow cytometry analyses. The regulatory mechanisms of Cyr61 production in bone marrow were examined using qRT-PCR and western blot analysis. RESULTS Cyr61 knockdown and overexpression increased and decreased the chemosensitivity of B-ALL cells to DNR, respectively. Cyr61 attenuated chemotherapeutic drug-induced apoptosis by upregulating B cell lymphoma-2. Notably, DNR induced DNA damage response and increased Cyr61 secretion in B-ALL cells through the ataxia telangiectasia mutated (ATM)-dependent nuclear factor kappa B pathway. CONCLUSION DNR induces Cyr61 production in B-ALL cells, and increased Cyr61 levels reduce the chemosensitivity of B-ALL cells. Consequently, targeting Cyr61 or related ATM signaling pathway may present a promising treatment strategy to enhance the chemosensitivity of patients with B-ALL.
Collapse
Affiliation(s)
- Pengchong Shi
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Zhen Lin
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Yanfang Song
- Department of Clinical Laboratory, Affiliated People Hospital of Fujian University of Traditional Chinese Medicine, 602 Bayiqi Road, Fuzhou, 350001, Fujian, China
| | - Zhaozhong Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Menglu Zeng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Li Luo
- Department of Clinical Laboratory, Affiliated People Hospital of Fujian University of Traditional Chinese Medicine, 602 Bayiqi Road, Fuzhou, 350001, Fujian, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Zhang Y, Han S, Xiao X, Zheng L, Chen Y, Zhang Z, Gao X, Zhou S, Yu K, Huang L, Fu J, Hong Y, Jiang J, Qian W, Yang H, Shen J. Integration analysis of tumor metagenome and peripheral immunity data of diffuse large-B cell lymphoma. Front Immunol 2023; 14:1146861. [PMID: 37234150 PMCID: PMC10206395 DOI: 10.3389/fimmu.2023.1146861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background/purpose It has been demonstrated that gut microbes are closely associated with the pathogenesis of lymphoma, but the gut microbe landscape and its association with immune cells in diffuse large B-cell lymphoma (DLBCL) remain largely unknown. In this study, we explored the associations between gut microbiota, clinical features and peripheral blood immune cell subtypes in DLBCL. Method A total of 87 newly diagnosed DLBCL adults were enrolled in this study. The peripheral blood samples were collected from all patients and then submitted to immune cell subtyping using full-spectral flow cytometry. Metagenomic sequencing was applied to assess the microbiota landscape of 69 of 87 newly diagnosed DLBCL patients. The microbiotas and peripheral blood immune cell subsets with significant differences between different National Comprehensive Center Network-International Prognostic Indexes (NCCN-IPIs) (low-risk, low-intermediate-risk, intermediate-high-risk, high-risk) groups were screened. Results A total of 10 bacterial phyla, 31 orders and 455 bacteria species were identified in 69 patients with newly diagnosed DLBCL. The abundances of 6 bacteria, including Blautia sp.CAG 257, Actinomyces sp.S6 Spd3, Streptococcus parasanguinis, Bacteroides salyersiae, Enterococcus faecalls and Streptococcus salivarius were significantly different between the low-risk, low-intermediate-risk, intermediate-high-risk and high-risk groups, among which Streptococcus parasanguinis and Streptococcus salivarius were markedly accumulated in the high-risk group. The different bacteria species were mostly enriched in the Pyridoxal 5'-phosphate biosynthesis I pathway. In addition, we found that 2 of the 6 bacteria showed close associations with the different immune cell subtypes which were also identified from different NCCN-IPIs. In detail, the abundance of Bacteroides salyersiae was negatively correlated with Treg cells, CD38+ nonrescue exhausted T cells, nature killer 3 cells and CD38+CD8+ effector memory T cells, while the abundance of Streptococcus parasanguinis was negatively correlated with HLA-DR+ NK cells, CD4+ Treg cells, HLA-DR+ NKT cells and HLA-DR+CD94+CD159c+ NKT cells. Conclusion This study first reveals the gut microbiota landscape of patients with newly diagnosed DLBCL and highlights the association between the gut microbiota and immunity, which may provide a new idea for the prognosis assessment and treatment of DLBCL.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiyun Han
- Department of Lymphoma, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Xibing Xiao
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zheng
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| | - Yingying Chen
- Department of Hematology, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Zhijian Zhang
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| | - Xinfang Gao
- Department of Hematology, Jinhua People’s Hospital, Jinhua, China
| | - Shujuan Zhou
- Department of Hematology, The First Hospital Affiliated to Wenzhou Medical University, Weizhou, China
| | - Kang Yu
- Department of Hematology, The First Hospital Affiliated to Wenzhou Medical University, Weizhou, China
| | - Li Huang
- Department of Hematology, Jinhua People’s Hospital, Jinhua, China
| | - Jiaping Fu
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| | - Yongwei Hong
- Department of Hematology, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Yang
- Department of Lymphoma, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Jianping Shen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Kang JH, Park S, Rho J, Hong EJ, Cho YE, Won YS, Kwon HJ. IL-17A promotes Helicobacter pylori-induced gastric carcinogenesis via interactions with IL-17RC. Gastric Cancer 2023; 26:82-94. [PMID: 36125689 PMCID: PMC9813207 DOI: 10.1007/s10120-022-01342-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.
Collapse
Affiliation(s)
- Jee Hyun Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jinhyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
5
|
Zhang J, Zhong M, Zhong W, Lan Y, Yuan Z, Duan Y, Wei Y. Construction of tandem diabody (IL-6/CD20)-secreting human umbilical cord mesenchymal stem cells and its experimental treatment on diffuse large B cell lymphoma. Stem Cell Res Ther 2022; 13:473. [PMID: 36104733 PMCID: PMC9476312 DOI: 10.1186/s13287-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 40% patients with diffuse large B cell lymphoma (DLBCL) experienced relapse or refractory (R/R) lymphoma after the standard first R-CHOP therapy. IL-6 was reportedly associated with chemotherapy resistance of rituximab. Further, mesenchymal stem cells (MSCs) are known as the potential cell vehicle for their tropism toward tumor. A MSCs-based tandem diabody for treating DLBCL is currently lacking. METHODS We constructed a tandem diabody (Tandab(IL-6/CD20)) with modified umbilical cord MSCs (UCMSCs) and designed a cell-based Tandab releasing system. Western blot, qPCR and immunofluorescence were used to confirm the construction and expression of lentivirus-infected UCMSCs. The vitality, apoptosis and homing abilities of UCMSCs were examined via CCK-8 assay, apoptosis, wound healing and migration analysis. Cell binding assay was used to demonstrate the targeting property of Tandab binding to CD20-positive DLBCL cells. Furthermore, we evaluated the viability of SU-DHL-2 and SU-DHL-4 by using CCK-8 and EDU assay after the treatment of UCMSCs-Tandab(IL-6/CD20). RESULTS Tandab protein peaked at 6273 ± 487 pg/ml in the medium on day 7 after cell culture. The proliferation and homing ability of UCMSCs did not attenuate after genetically modification. Immunofluorescence images indicated the Tandab protein bound to the lymphoma cells. UCMSCs-Tandab(IL-6/CD20) inhibited the growth of SU-DHL-2 or SU-DHL-4 cells in vitro. CONCLUSIONS UCMSCs-Tandab(IL-6/CD20), which bound with both tumor-associated surface antigens and pro-tumor cytokines in tumor microenvironment, might serve as a potential treatment for DLBCL, evidenced by inhibiting the growth of SU-DHL-2 or SU-DHL-4 cells.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Minglu Zhong
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology and Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfei Lan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Sun R, Zhang PP, Weng XQ, Gao XD, Huang CX, Wang L, Hu XX, Xu PP, Cheng L, Jiang L, Fu D, Qu B, Zhao Y, Feng Y, Dou HJ, Zheng Z, Zhao WL. Therapeutic targeting miR130b counteracts diffuse large B-cell lymphoma progression via OX40/OX40L-mediated interaction with Th17 cells. Signal Transduct Target Ther 2022; 7:80. [PMID: 35301282 PMCID: PMC8931122 DOI: 10.1038/s41392-022-00895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in lymphoma progression by regulating the tumor microenvironment. Serum miR130b is overexpressed in diffuse large B-cell lymphoma (DLBCL), inducing Th17 cell alterations. To further illustrate its biological significance and therapeutic rationale, miR130b was detected by quantitative real-time PCR in the serum samples of 532 newly diagnosed DLBCL patients. The mechanism of miR130b on lymphoma progression and the tumor microenvironment was investigated both in vitro and in vivo. Therapeutic targeting miR130b was also evaluated, including OX40 agonistic antibody and lipid nanoparticles (LNPs)-miR130b antagomir. The results showed that serum miR130b significantly correlated with tumor miR130b and serum interleukin-17, indicating lymphoma relapse and inferior survival of DLBCL patients. MiR130b overexpression altered tumor microenvironment signaling pathways and increased Th17 cell activity. As mechanism of action, miR130b downregulated tumor OX40L expression by directly targeting IFNAR1/p-STAT1 axis, recruiting Th17 cells via OX40/OX40L interaction, thereby promoting immunosuppressive function of Th17 cells. In co-culture systems of B-lymphoma cells with immune cells, miR130b inhibited lymphoma cell autophagy, which could be counteracted by OX40 agonistic antibody and LNPs-miR130b antagomir. In murine xenograft model established with subcutaneous injection of A20 cells, both OX40 agonistic antibody and LNPs-miR130b antagomir remarkably inhibited Th17 cells and retarded miR130b-overexpressing tumor growth. In conclusion, as an oncogenic biomarker of DLBCL, miR130b was related to lymphoma progression through modulating OX40/OX40L-mediated lymphoma cell interaction with Th17 cells, attributing to B-cell lymphoma sensitivity towards OX40 agonistic antibody. Targeting miR130b using LNPs-miR130b antagomir could also be a potential immunotherapeutic strategy in treating OX40-altered lymphoid malignancies.
Collapse
Affiliation(s)
- Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Pei-Pei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Xiao-Dong Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Xiao-Xia Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Jing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China.
| |
Collapse
|
7
|
The Role of Neutrophils in the Pathogenesis of Chronic Lymphocytic Leukemia. Int J Mol Sci 2021; 23:ijms23010365. [PMID: 35008790 PMCID: PMC8745265 DOI: 10.3390/ijms23010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor-associated neutrophils appear to be a crucial element of the tumor microenvironment that actively participates in the development and progression of cancerous diseases. The increased lifespan, plasticity in changing of phenotype, and functions of neutrophils influence the course of the disease and may significantly affect survival. In patients with chronic lymphocytic leukemia (CLL), disturbances in neutrophils functions impede the effective immune defense against pathogens. Therefore, understanding the mechanism underlying such a phenomenon in CLL seems to be of great importance. Here we discuss the recent reports analyzing the phenotype and functions of neutrophils in CLL, the most common leukemia in adults. We summarize the data concerning both the phenotype and the mechanisms by which neutrophils directly support the proliferation and survival of malignant B cells.
Collapse
|
8
|
Liu Y, Guo X, Zhan L, Wang L, Wang X, Jiang M. LAG3 and PD1 Regulate CD8+ T Cell in Diffuse Large B-cell Lymphoma Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4468140. [PMID: 34422089 PMCID: PMC8378962 DOI: 10.1155/2021/4468140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous lymphoid malignancy. The unsatisfactory outcome for refractory patients has prompted efforts to explore new therapeutic approaches for DLBCL. However, the mechanisms involved in treatment associated with immune checkpoints remain unclear. This study is aimed at investigating the potential roles of programmed cell death protein 1 (PD1) and lymphocyte activation gene 3 (LAG3) in CD8+ T cells for treatment in DLBCL. METHODS Utilizing flow cytometry, we examined the content of T cells, the levels of cytokines, and the expression of PD1 and LAG3 in patients with DLBCL as well as in healthy controls. Levels of cytokines in CD8+ T cells from DLBCL patients before and after treatment were compared by blocking of PD1 and LAG3 in magnetic bead-sorted CD8+ T cells. RESULTS We found that the proportion of CD4+ T cells and CD8+ T cells was increased in DLBCL patients after treatment. The levels of cytokines trended toward those of healthy controls in treatment. PD1 (+), LAG3 (+), or PD1 (+) LAG3 (+) were all expressed in lower amounts in CD4+ T cells and CD8+ T cells after treatment than in untreated DLBCL patients. In addition, blockade of PD1 and LAG3 in sorted CD8+ T cells markedly inhibited cytokine production in response to treatment. CONCLUSION PD1 and LAG3 in CD8+ T cells may be important targets of therapy and play therapeutic role in patients with DLBCL.
Collapse
Affiliation(s)
- Ying Liu
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, China
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, 830061 Xinjiang, China
| | - Xinhong Guo
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, China
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, 830061 Xinjiang, China
| | - Lingbo Zhan
- Xinjiang Medical University, Urumqi, 830000 Xinjiang, China
| | - Lei Wang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, China
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, 830061 Xinjiang, China
| | - Xinyou Wang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, China
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, 830061 Xinjiang, China
| | - Ming Jiang
- Hematologic Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, China
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, 830061 Xinjiang, China
| |
Collapse
|
9
|
Fuller AM, Yang L, Hamilton AM, Pirone JR, Oldenburg AL, Troester MA. Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis. J Mammary Gland Biol Neoplasia 2021; 26:89-99. [PMID: 33439408 PMCID: PMC8715550 DOI: 10.1007/s10911-020-09477-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype.
Collapse
Affiliation(s)
- Ashley M Fuller
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Penn Sarcoma Program, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Lin Yang
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jason R Pirone
- School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Nuventra Pharma Sciences, Durham, NC, 27713, USA
| | - Amy L Oldenburg
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Desmirean M, Rauch S, Jurj A, Pasca S, Iluta S, Teodorescu P, Berce C, Zimta AA, Turcas C, Tigu AB, Moldovan C, Paris I, Steinheber J, Richlitzki C, Constantinescu C, Sigurjonsson OE, Dima D, Petrushev B, Tomuleasa C. B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974? J Clin Med 2020; 9:jcm9113412. [PMID: 33114418 PMCID: PMC7693982 DOI: 10.3390/jcm9113412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman.
Collapse
Affiliation(s)
- Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Ancuta Jurj
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cristian Berce
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Irene Paris
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400124 Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
- Correspondence: ; Tel.: +40741337489
| |
Collapse
|
12
|
Casadesús AV, Deligne C, Diallo BK, Sosa K, Josseaume N, Mesa C, León K, Hernández T, Teillaud JL. A rationally-engineered IL-2 improves the antitumor effect of anti-CD20 therapy. Oncoimmunology 2020; 9:1770565. [PMID: 32923126 PMCID: PMC7458652 DOI: 10.1080/2162402x.2020.1770565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Anti-CD20 treatment represents a therapeutic benefit for patients with B-cell lymphomas, although more efficient therapies are needed for refractory or relapsing patients. Among them, the combination of anti-CD20 and IL-2 that induces T cell response has been hampered by the expansion of FoxP3+ Tregs that strongly express the high affinity IL-2 receptor (IL-2R αβγ). We explore here the anti-tumor effect of an anti-CD20 antibody combined with a mutated IL-2 (no-alpha mutein) which has a disrupted affinity for the IL-2R αβγ. We demonstrate that anti-CD20/no-alpha mutein combination significantly augments the survival rate of mice challenged with huCD20+ cells as compared to animals treated with anti-CD20 ± IL-2. Moreover, the combination with no-alpha mutein but not IL-2 provokes an increase of granzyme B and perforin in splenic NK and CD8+ T cells, a reduction of Tregs and an increase in activated macrophages. The former combination also induces a T helper profile different from that obtained with IL-2, with an earlier polarization to Th1 and no increase in Th17. The therapeutic effect of anti-CD20/no-alpha mutein was accompanied by an expansion of peripheral central (TCM) and effector (TEM) memory CD8+ T cell compartments. Last, as opposed to IL-2, no-alpha mutein administered at the beginning of anti-CD20 treatment did not dampen the long-term protection of surviving mice after tumor rechallenge. Thus, this study shows that the combination of anti-tumor antibodies and no-alpha mutein is a promising approach to improve the therapeutic effect of these antibodies by potentiating NK/macrophage-mediated innate immunity and the adaptive T-cell response.
Collapse
Affiliation(s)
- Ana Victoria Casadesús
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba.,Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Claire Deligne
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Béré Kadjdiatou Diallo
- Sorbonne Université, Faculté De Médecine, UMRS 1135, Centre d'Immunologie Et Des Maladies Infectieuses Paris (Cimi-paris), Paris, France.,Inserm U.1135, Immunology and Infectious Diseases Center (Cimi-paris), "Immune Microenvironment and Immunotherapy" Laboratory, Paris, France
| | - Katya Sosa
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba.,Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Nathalie Josseaume
- Inserm U.1138, Cordeliers Research Center, Paris, France.,UMRS 1138 Centre De Recherche Des Cordeliers, Sorbonne Université, Paris, France.,Université Sorbonne Paris Cité, UMRS 1138, Centre De Recherche Des Cordeliers, Paris Descartes Université, Paris, France
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Kalet León
- Systems Biology Department, Center of Molecular Immunology, Havana, Cuba
| | - Tays Hernández
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba.,Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Jean-Luc Teillaud
- Sorbonne Université, Faculté De Médecine, UMRS 1135, Centre d'Immunologie Et Des Maladies Infectieuses Paris (Cimi-paris), Paris, France.,Inserm U.1135, Immunology and Infectious Diseases Center (Cimi-paris), "Immune Microenvironment and Immunotherapy" Laboratory, Paris, France
| |
Collapse
|
13
|
Zhong W, Zhu Z, Xu X, Zhang H, Xiong H, Li Q, Wei Y. Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:73. [PMID: 30755239 PMCID: PMC6373150 DOI: 10.1186/s13046-019-1081-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023]
Abstract
Background The drug-resistance and relapse of diffuse large B-cell lymphoma (DLBCL), which are related to mesenchymal stem cells (MSCs), have become increasingly common. However, the underlying mechanisms remain elusive. Methods CCK 8 assay, colony formation assay, and xenograft mouse model were used to investigate the effects of hBMSCs on DLBCL growth. Immunohistochemistry, qRT-PCR, and ELISA were used to study the expressions of IL-6 and IL-17A. Flow cytometry was used to analyze Th17 cells and Treg cells expressions. Western blot analysis, microarray analysis, and bioinformatics analysis were used to analyze the pathways of IL-6 or IL-17A mediated DLBCL growth. Results HBMSCs promoted DLBCL growth by secreting IL-6 in vitro and in vivo and simultaneously upregulating IL-17A in vitro. IL-6 and IL-17A synergistically promoted the growth and drug-resistance of DLBCL cells by protecting them from spontaneous or drug-induced apoptosis in vitro. IL-6 or IL-17A activated the JAK2/STAT3 pathway or upregulated cyclin D2 via activation of PI3K/Akt signaling in vitro, respectively. Conclusions The present results indicated that hBMSCs might have a “dual effect” on promoting DLBCL progression and drug-resistance by secreting IL-6 and upregulating IL-17A. IL-6, IL-17A, p-STAT3, p-Akt or cyclin D2 may be potential molecular targets for overcoming drug-resistance in patients with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Xu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jinan, 272067, Shandong, China
| | - Huabao Xiong
- Immunology Institute, Mount Sinai School of Medicine, NY10029, New York, 5674, USA
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
14
|
Luo B, Huang L, Gu Y, Li C, Lu H, Chen G, Peng Z, Feng Z. Expression of exportin-1 in diffuse large B-cell lymphoma: immunohistochemistry and TCGA analyses. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5547-5560. [PMID: 31949642 PMCID: PMC6963058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
UNLABELLED Exportin-1 (XPO1) is an essential nuclear export receptor that is involved in the pathogenesis of multiple tumors. However, the role of XPO1 in diffuse large B-cell lymphoma (DLBCL) requires clarification. This study aims to detect XPO1 expression in DLBCL and to explore its relationships with clinicopathologic parameters and prognoses. METHODS A total of 131 cases of DLBCL and 30 cases of reactive lymphoid hyperplasia were selected for immunohistochemistry to examine XPO1 expression and analyze the relationships of XPO1 expression with clinicopathologic parameters and prognosis. DLBCL datasets downloaded from The Cancer Genome Atlas (TCGA) were used to analyze the mutations, expressions, and clinical values of XPO1 in DLBCL. RESULTS XPO1 expression was markedly upregulated in DLBCL compared to the reactive lymphoid hyperplasia group (χ2 = 10.734, P = 0.001). High XPO1 expression was associated with an advanced clinical stage (χ2 = 4.036, P = 0.045) and a risky International Prognostic Index (IPI) score (χ2 = 5.301, P = 0.025). Moreover, high XPO1 expression was associated with a lower overall survival rate compared with low expression (P = 0.043). XPO1 was an independent prognostic factor for DLBCL (risk ratio, RR = 3.772, P = 0.006). Furthermore, XPO1 overexpression in DLBCL was correlated with a high IPI score (P = 0.024) in TCGA datasets. CONCLUSION High XPO1 expression in DLBCL was related to an advanced clinical stage, poor IPI score, and poor prognosis. Thus, XPO1 may be useful for condition identification and prognostic assessment.
Collapse
Affiliation(s)
- Bin Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yongyao Gu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chunyao Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Huiping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhigang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
15
|
Al Obeed OA, Vaali-Mohamed MA, Alkhayal KA, Bin Traiki TA, Zubaidi AM, Arafah M, Harris RA, Khan Z, Abdulla MH. IL-17 and colorectal cancer risk in the Middle East: gene polymorphisms and expression. Cancer Manag Res 2018; 10:2653-2661. [PMID: 30233234 PMCID: PMC6130533 DOI: 10.2147/cmar.s161248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background IL-17 expressed by Th17 cells play a crucial role in tissue inflammation by induction of proinflammatory and neutrophil mobilizing cytokines, and IL-17 polymorphisms are associated with colorectal cancer (CRC). Objective We investigated the expression of IL-17 and the association of IL-17 gene polymorphisms with CRC susceptibility in a Middle East population. Materials and methods The study included 117 diagnosed CRC patients and 100 age- and gender-matched healthy controls. IL-17A rs2275913 (G197A) and IL-17F rs763780 (T7488C) single nucleotide polymorphisms, mRNA, and protein levels of IL-17A were assessed. Results We observed significant association between rs2275913 in IL-17A and susceptibility to CRC (p = 0.016228). The AG and AA genotypes conferred 2-fold and 2.8-fold, respectively, higher risk of developing CRC compared with individuals having GG genotype. Stratification of the data based on gender and age revealed very strong association of CRC with IL17A rs2275913 only in males and “AG” genotype in patients ≤57 years of age at the time of disease diagnosis. The rs763780 in IL-17F was not linked with CRCs in our cohort. Furthermore, IL-17A mRNA expression in CRCs was significantly elevated compared to adjacent normal tissues, particularly in early stages of disease (p = 0.0005). Strong immunoreactivity to IL-17A protein was observed in 70% of early stage relative to 30% of late-stage tumors. Conclusion The IL-17A G197A variant may be utilized as a genetic screening marker in assessing CRC risk, and its expression can be used as a biomarker for early detection of CRC in the Saudi population.
Collapse
Affiliation(s)
- Omar A Al Obeed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Mansoor-Ali Vaali-Mohamed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Khayal A Alkhayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Thamer A Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Ahmad M Zubaidi
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| | - Maha Arafah
- Department of Pathology, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia,
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia,
| |
Collapse
|