1
|
van Kan M, Burns KE, Helsby NA. A systematic review of inter-individual differences in the DNA repair processes involved in melphalan monoadduct repair in relation to treatment outcomes. Cancer Chemother Pharmacol 2021; 88:755-769. [PMID: 34347127 DOI: 10.1007/s00280-021-04340-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/31/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Melphalan is a bifunctional alkylating agent that elicits its cytotoxic activity by rapidly forming an initial DNA monoadduct, which then produces an inter-strand crosslink. Most studies exploring the role of inherited differences in DNA repair and melphalan outcomes focus on inter-strand crosslink repair, however, monoadduct repair likely plays a key role since it minimises the ultimate production of these crosslinks. The purpose of this systematic review was to assess evidence of an association between variation in monoadduct repair pathways and melphalan response. METHODS A literature search was undertaken using Medline, Embase, Scopus and PubMed databases. Duplicates were removed and only full-text articles were included. To be included for critique in this systematic review, articles were assessed for relevance using strict inclusion/exclusion criteria. RESULTS Fourteen studies were identified that involved patients treated with melphalan, however, in 3, only a minority of the cohort received melphalan. Across the remaining 11 studies, 61 genes/proteins in DNA monoadduct repair pathways were assessed. Both germline SNP (CDKN1A, ERCC1, ERCC2, ERCC4, ERCC6, EXO1, MLH1, MNAT1, MUTYH, PARP4, PCNA, POLE, POLR1G, RAD23B, RFC1, RFC3, RPA1, RPA3, TREX1, UNG, XPC, XRCC1) and somatic expression (CDKN1A, PARP1, PCNA, MGMT, RECQL, RFC5) were associated with melphalan outcomes in ≥ 1 study. CONCLUSION It appears that inherited germline differences in monoadduct repair genes may be a risk factor for poor outcomes. However, the diversity of study design, patient cohorts, genes assessed and lack of replication, preclude any meta-analysis. Further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Maia van Kan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Kathryn E Burns
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nuala A Helsby
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wang W, Wang L, Xie X, Yan Y, Li Y, Lu Q. A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma. BMC Cancer 2021; 21:6. [PMID: 33402113 PMCID: PMC7786458 DOI: 10.1186/s12885-020-07692-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately 90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in clinical practice. METHODS Using The Cancer Genome Atlas (TCGA) dataset, we identified genes associated with RFS. A robust likelihood-based survival modeling approach was used to select the best genes for the prognostic model. Then, the GSE76427 dataset was used to evaluate the prognostic model's effectiveness. RESULTS We identified 1331 differentially expressed genes associated with RFS. Seven of these genes were selected to generate the prognostic model. The validation in both the TCGA cohort and GEO cohort demonstrated that the 7-gene prognostic model can predict the RFS of HCC patients. Meanwhile, the results of the multivariate Cox regression analysis showed that the 7-gene risk score model could function as an independent prognostic factor. In addition, according to the time-dependent ROC curve, the 7-gene risk score model performed better in predicting the RFS of the training set and the external validation dataset than the classical TNM staging and BCLC. Furthermore, these seven genes were found to be related to the occurrence and development of liver cancer by exploring three other databases. CONCLUSION Our study identified a seven-gene signature for HCC RFS prediction that can be used as a novel and convenient prognostic tool. These seven genes might be potential target genes for metabolic therapy and the treatment of HCC.
Collapse
Affiliation(s)
- Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Li
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Xiao M, Cui S, Zhang L, Yu T, Zhang G, Zhang Q, Li L, Cai Y, Jin C, Yang J, Wu S, Lu X. AC138128.1 an Intronic lncRNA originating from ERCC1 Implies a Potential Application in Lung Cancer Treatment. J Cancer 2019; 10:3608-3617. [PMID: 31333777 PMCID: PMC6636308 DOI: 10.7150/jca.31832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most devastating tumors with a high incidence and mortality worldwide. Polymorphisms and expression of ERCC1 commonly predicted the occurrence and prognosis of lung cancer. However, few studies have focused on long non-coding RNAs related to ERCC1 though some studies reminded the importance of its post-transcriptional regulation. In the present study, an intronic lncRNA AC138128.1 originated from ERCC1 was firstly identified in microarray chip and database, and its possibility as a novel biomarker to predict lung cancer treatment was further discussed. Firstly, the qRT-PCR data showed that AC138128.1 expression was much lower in lung cancer comparing with its para-cancer tissues, which further analyzed by ROC curve. Similarly, the difference was also verified in 16HBE, A549 and LK2 cells. Then AC138128.1 expression was found to have an increasing trend in a dose or time-dependent manner after cisplatin treatment. Finally, the subcellular distribution of AC138128.1 reminded that AC138128.1 was mainly expressed in the nucleus. Interestingly a positive relationship between AC138128.1 and ERCC1 expression was only found in cancer tissues, which reminded AC138128.1 may be involved in the regulation of ERCC1. Therefore, as a preliminary exploration of the lncRNA originated from ERCC1, the present study suggested AC138128.1 is of potential value in predicting platinum analogue benefit in lung cancer.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Su Cui
- Dept. of Thoracic Surgery Ward 2, The first Hospital of China Medical University, Shenyang, P.R. China
| | - Liang Zhang
- Dept. of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, P.R. China
| | - Tao Yu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Liuli Li
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Yuan Cai
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, P.R. China
| |
Collapse
|
4
|
Yu T, Xue P, Cui S, Zhang L, Zhang G, Xiao M, Zheng X, Zhang Q, Cai Y, Jin C, Yang J, Wu S, Lu X. Rs3212986 polymorphism, a possible biomarker to predict smoking-related lung cancer, alters DNA repair capacity via regulating ERCC1 expression. Cancer Med 2018; 7:6317-6330. [PMID: 30453383 PMCID: PMC6308093 DOI: 10.1002/cam4.1842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in 3'UTR of key DNA repair enzyme genes are associated with inter-individual differences of DNA repair capacity (DRC) and susceptibility to a variety of human malignancies such as lung cancer. In this study, seven candidate SNPs in 3'UTR of DRC-related genes including ERCC1 (rs3212986, rs2336219, and rs735482), OGG1 (rs1052133), MLH3 (rs108621), CD3EAP (rs1007616), and PPP1R13L (rs6966) were analyzed in 300 lung cancer patients and controls from the northeast of China. Furthermore, we introduced ERCC1 (CDS+3'UTR) or CD3EAP (CDS) cDNA clone to transfect HEK293T and 16HBE cells. Cell viability between different genotypes of transfected cells exposed to BPDE was detected by CCK-8 assay, while DNA damage was visualized using γH2AX immunofluorescence and the modified comet assay. We found that minor A-allele of rs3212986 could reflect a linkage with increasing risk of NSCLC. Compared with CC genotype, AA genotype of ERCC1 rs3212986 was a high-risk factor for NSCLC (OR = 3.246; 95%CI: 1.375-7.663). Particularly stratified by smoking status in cases and controls, A allele of ERCC1 rs3212986 also exhibited an enhanced risk to develop lung cancer in smokers only (P < 0.05). Interestingly, reduced repair efficiency of DNA damage was observed in 293T ERCC1(AA) and 16HBE ERCC1(AA), while no significant difference was appeared in two genotypes of CD3EAP (3' adjacent gene of ERCC1) overexpressed cells. Our findings suggest that rs3212986 polymorphism in 3'UTR of ERCC1 overlapped with CD3EAP may affect the repair of the damage induced by BPDE mainly via regulating ERCC1 expression and become a potential biomarker to predict smoking-related lung cancer.
Collapse
Affiliation(s)
- Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Ping Xue
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiao Zheng
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Qianye Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|