1
|
Xing W, Zhao Y, Lin L, Zhao Z, Yang M, Wang N, Cui S, Bai R, Zhao A. Overexpression of S100A1 in Osteosarcoma Inhibits Tumor Proliferation and Progression. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:2773-2782. [PMID: 36742226 PMCID: PMC9874206 DOI: 10.18502/ijph.v51i12.11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Background Osteosarcoma is the most common primary malignant tumor of bone. Abnormal expression of S100A1 protein is closely related to the occurrence and development of malignant tumors. However, S100A1 in osteosarcoma has not been studied. Methods All osteosarcoma tissues were collected from patients who received surgical therapy at the Affiliated Hospital of Inner Mongolia Medical University, China in 2020. QRT-PCR and western blot assays were used to detect the expression of S100A1 in osteosarcoma tissues and cells. The negative effect of S100A1 on osteosarcoma cell growth was confirmed by vitro and vivo experiments. Results S100A1 inhibited the growth of osteosarcoma cells in vitro. Overexpression of S100A1 may inhibit the proliferation of osteosarcoma cells by preventing the activation of AKT signaling pathway by western blot assay. Finally, animal experiments confirmed that overexpression of S100A1 could inhibit the proliferation of osteosarcoma cells. Overexpression of S100A1 obtained better survival benefit in mice. Conclusion Our findings provided a new insight to the treatment of osteosarcoma. It also raised the possibility that S100A1 could be used in targeted therapies for osteosarcoma.
Collapse
Affiliation(s)
- Wenhua Xing
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Yanbin Zhao
- Health Care Center of Ning Bo Customs, Ningbo City, Zhejiang Province, 315012, China
| | - Liuwan Lin
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Zhenqun Zhao
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Mengchen Yang
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Na Wang
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Shuxia Cui
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China
| | - Rui Bai
- The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China,Corresponding Authors:
| | - Aiqing Zhao
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 10030, China,Corresponding Authors:
| |
Collapse
|
2
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
3
|
Yuan C, Zhou J, Zhou L, Wang L, Pan Y. Role of MiR-27a-3p in Intervertebral Disc Degeneration through Targeting RASSF5 via MST1/LATS1 and RAS/RAC1 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4457673. [PMID: 35295173 PMCID: PMC8920666 DOI: 10.1155/2022/4457673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Background The apoptosis of nucleus pulposus (NP) cells reduces the number of nucleus pulposus cells in intervertebral disc tissue, resulting in intervertebral disc degeneration (IDD). MicroRNAs (miRNAs) play an important regulatory role in abnormal cell proliferation and apoptosis. Methods The miR-27a-3p expressions in degenerative NP tissue and cells were measured via qPCR. The impacts of miR-27a-3p on the proliferation and apoptosis of human NP cells were evaluated by flow cytometry assays, MTT assays, and western blot analyses. In addition, target scan and luciferase reporter assay were applied to confirm that RASSF5 was directly binding to miR-27a-3p. Western blot was applied to assess the relationship between miR-27a-3p, RASSF5 and MST1/LATS1, and RAS/RAC1 signaling pathway. Results MiR-27a-3p was downregulated in degenerative NP tissues and cells by comparison with the control group. MiR-27a-3p overexpression enhanced cell proliferation and suppressed apoptosis of NP cells, while the above factors showed an opposite tendency after in the miR-27a-3p inhibitor group. The western blot experiment similarly suggested mir-27a-3p apparently downregulated apoptosis-related proteins (Bax and caspase-3) and upregulated antiapoptotic proteins (Bcl-2). In addition, RASSF5 was confirmed to be directly regulated by miR-27a-3p using the luciferase reporter assay. Overexpressed RASSF5 could reverse the effects caused by miR-27a-3p mimic. Finally, miR-27a-3p could downregulate RASSF5 and affected the MST1/LATS1 and RAS/RAC1 pathway. Conclusion MiR-27a-3p may target RASSF5 and enhance cell proliferation and imped cell apoptosis of the nucleus pulposus cells via the MST1/LATS1 and RAS/RAC1 pathway, lessening the degeneration of intervertebral discs.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lei Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Liran Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yong Pan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
4
|
Wang G, Li HN, Cui XQ, Xu T, Dong ML, Li SY, Li XR. S100A1 is a Potential Biomarker for Papillary Thyroid Carcinoma Diagnosis and Prognosis. J Cancer 2021; 12:5760-5771. [PMID: 34475990 PMCID: PMC8408122 DOI: 10.7150/jca.51855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
S100 calcium binding protein A1 (S100A1) is an important member of the S100 family and known to express in a variety of cancers. However, the biological functions of S100A1 in thyroid carcinoma have not been thoroughly studied. In this report, bioinformatics analyses and immunohistochemistry assays were applied to assess the expression profile of S100A1 as well as its relationship with the pathological features and prognosis of papillary thyroid carcinoma (PTC). Meanwhile, functions of S100A1 in PTC cells were analyzed with either in vitro or in vivo experiments. S100A1 was significantly up-regulated in PTC tissues compared with adjacent non-cancerous tissues. S100A1 protein expression was significantly associated with tumor size (p=0.0032) or lymph node metastasis (p=0.0331). More importantly, an elevated S100A1 expression was significantly correlated with a worse recurrence-free survival (RFS) (HR=2.26, p=0.042). Further, knockdown of S100A1 dramatically inhibited cell proliferation and migration as well as increased apoptosis of PTC cells. S100A1 knockdown inhibited tumor progression as seen in in vivo experiments. In terms of mechanism, down-regulation of S100A1 induced yes associated protein (YAP) phosphorylation in the cytoplasm and diminished Hippo/YAP pathway activation. Therefore, S100A1 may serve as a novel oncogene and a promising biomarker for PTC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xiao-Qing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
5
|
Zheng S, Liu L, Xue T, Jing C, Xu X, Wu Y, Wang M, Xie X, Zhang B. Comprehensive Analysis of the Prognosis and Correlations With Immune Infiltration of S100 Protein Family Members in Hepatocellular Carcinoma. Front Genet 2021; 12:648156. [PMID: 33815482 PMCID: PMC8013731 DOI: 10.3389/fgene.2021.648156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 01/27/2023] Open
Abstract
S100 protein family members (S100s) are commonly dysregulated in various tumors including hepatocellular carcinoma (HCC). However, the diverse expression, mutation, prognosis and associations with immune infiltration of S100s in HCC have yet to be analyzed. Herein we investigated the roles of S100s in HCC from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal and TIMER databases. Compared with para-cancer tissues, the expression levels of S100A4/S100A6/S100A10/S100A11/S100A13/S100A14/S100P were higher in HCC tissues, while the expression levels of S100A8/S100A9/S100A12 were decreased in tumor tissues. The mRNA levels of S100A2/S100A7/S100A7A/S100A8/S100A9/S100A11 were correlated with advanced tumor stage. Besides, higher mRNA expressions of S100A6/S100A10/S100A11/S100A13/S100A14/S100P were shown to have shorter overall survival (OS), while higher expression of S100A12 was associated with favorable OS. Further, the mutation rate of S100s was investigated, and the high mutation rate (53%) was associated with shorter OS. Additionally, the expressions of S100s were found to be significantly associated with various immune infiltrating cells. Hence, our results showed that S100A6/S100A10/S100A11/S10012/S100A13/S100A14/S100P may be regarded as new prognostic or therapeutic markers and S100s inhibitors may be helpful in the combination of immunotherapies.
Collapse
Affiliation(s)
- Susu Zheng
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Linxia Liu
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Tongchun Xue
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Chuyu Jing
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Xin Xu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Yanfang Wu
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Meixia Wang
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaoying Xie
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China
| | - Boheng Zhang
- Xiamen Branch, Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai Medical School, The Liver Cancer Institute, The Chinese Ministry of Education, Fudan University, Shanghai, China.,Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Huang P, Xue J. Long non‑coding RNA FOXD2‑AS1 regulates the tumorigenesis and progression of breast cancer via the S100 calcium binding protein A1/Hippo signaling pathway. Int J Mol Med 2020; 46:1477-1489. [PMID: 32945354 PMCID: PMC7447301 DOI: 10.3892/ijmm.2020.4699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most prevalent cancer types and is accompanied by a high incidence and mortality rate, severely threatening women's health globally. Long non‑coding RNA forkhead box D2 adjacent apposite strand RNA 1 (lncRNA FOXD2‑AS1) has been identified to function as an oncogene in human cancers; however, it has rarely been investigated in breast cancer. The aim of the present study was to investigate the role of FOXD2‑AS1 in breast cancer, and to clarify the underlying mechanisms. The expression of FOXD2‑AS1 in breast cancer cell lines was first quantified by reverse transcription‑quantitative PCR, and the biological function of FOXD2‑AS1 was then determined. Cellular proliferative ability was determined by Cell Counting kit‑8 assay, and wound healing and Transwell assays were conducted to assess the cell migratory and invasive ability. Corresponding protein expression levels were determined by western blot analysis. In addition, experimental animal models were established by the subcutaneous injection of MDA‑MB‑468 cells into the right axillary lymph nodes of BALB/c nude mice, and the effects of FOXD2‑AS1 on tumor growth were observed. The results indicated that FOXD2‑AS1 expression was upregulated in breast cancer cell lines, and that FOXD2‑AS1 downregulation significantly inhibited the proliferation, migration and invasiveness of MCF‑7 and MDA‑MB‑468 cells. S100 calcium binding protein A1 (S100A1) was also upregulated in breast cancer cell lines and was positively regulated by FOXD2‑AS1. Furthermore, the inhibition of S100A1 and the overexpression of the serine/threonine‑protein kinase, large tumor suppressor homolog 1 (LATS1), inhibited the FOXD2‑AS1‑induced cellular proliferation, migration and invasiveness in breast cancer. Experimental mouse models revealed that FOXD2‑AS1 downregulation significantly inhibited tumor growth, and that the levels of phosphorylated (p‑)YAP and p‑LATS1 were upregulated by FOXD2‑AS1 knockdown, indicating that the inhibition of FOXD2‑AS1 activated Hippo/yes‑associated protein signaling. On the whole, the findings of the present study suggest that the FOXD2‑AS1/S100A1/Hippo axis is involved in the tumorigenesis and progression of breast cancer. In the future, these may contribution to the identification of more effective breast cancer treatments.
Collapse
Affiliation(s)
- Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
7
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
The Ambivalent Function of YAP in Apoptosis and Cancer. Int J Mol Sci 2018; 19:ijms19123770. [PMID: 30486435 PMCID: PMC6321280 DOI: 10.3390/ijms19123770] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein, a core regulator of the Hippo-YAP signaling pathway, plays a vital role in inhibiting apoptosis. Thus, several studies and reviews suggest that yes-associated protein is a good target for treating cancer. Unfortunately, more and more evidence demonstrates that this protein is also an essential contributor of p73-mediated apoptosis. This questions the concept that yes-associated protein is always a good target for developing novel anti-cancer drugs. Thus, the aim of this review was to evaluate the clinical relevance of yes-associated protein for cancer pathophysiology. This review also summarized the molecules, processes and drugs, which regulate Hippo-YAP signaling and discusses their effect on apoptosis. In addition, issues are defined, which should be addressed in the future in order to provide a solid basis for targeting the Hippo-YAP signaling pathway in clinical trials.
Collapse
|