1
|
Yang Z, Zuo Q, Liu R, Wu H, Chen J, Xiong L, Jia J, Xiang Z. The efficiency of liposomal paclitaxel versus docetaxel in neoadjuvant chemotherapy with the TPF regimen for locally advanced nasopharyngeal carcinoma: a retrospective study. Front Oncol 2024; 14:1465038. [PMID: 39450259 PMCID: PMC11499222 DOI: 10.3389/fonc.2024.1465038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose This retrospective study aimed to explore the efficiency and untoward reaction of liposomal paclitaxel versus docetaxel for locally advanced nasopharyngeal carcinoma (NPC). Methods This retrospective study included 115 patients diagnosed with NPC at our hospital between January 2018 and December 2021. Patients were stratified into two groups based on their treatment with either liposomal paclitaxel (n = 71) or docetaxel (n = 44) as part of the neoadjuvant chemotherapy regimen. Objective response rate (ORR), progression-free survival (PFS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS), and overall survival (OS) were compared between the two groups. Results ORR was significantly improved in the liposomal paclitaxel group than in the docetaxel group (62.0% versus 40.9%, p = 0.028). The 3-year PFS (PFS: 84.4% versus 77.5%, p = 0.303), LRFS (95.8% versus 94.4%, p = 0.810), DMFS (87.2% versus 83.0%, p = 0.443), and OS (90.7% versus 88.8%, p = 0.306) revealed no significance. The neutrophil-to-lymphocyte ratio [hazard ratio (HR): 3.510; p = 0.039] and distant metastasis (HR: 4.384; p = 0.035) were regarded as the risk factors using multivariate regression analysis. Moreover, the incidence of leukopenia at grades 1-2 in the liposomal paclitaxel group was significantly lower than that in the docetaxel group (28.1% versus 79.5%, p < 0.05). Conclusions Liposomal paclitaxel had better efficacy in terms of short-term effects and lower incidence of leukopenia at grades 1-2 compared with the docetaxel group.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Quan Zuo
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Rong Liu
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Hui Wu
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Jia Chen
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Li Xiong
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Jieqi Jia
- Department of Otolaryngology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Zhibi Xiang
- Department of Oncology, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| |
Collapse
|
2
|
Madani F, Morovvati H, Webster TJ, Najaf Asaadi S, Rezayat SM, Hadjighassem M, Khosravani M, Adabi M. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood-brain-barrier in a glioblastoma model. Sci Rep 2024; 14:19516. [PMID: 39174603 PMCID: PMC11341868 DOI: 10.1038/s41598-024-69888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Sareh Najaf Asaadi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Lee Y, Park SM, Song IH, Kim BS, Park HS, Moon BS, Kim HH. Pharmacokinetic evaluation of paclitaxel, albumin-binding paclitaxel, and liposomal-encapsulated albumin-binding paclitaxel upon gastric subserosal administration. Front Pharmacol 2024; 15:1381406. [PMID: 38904000 PMCID: PMC11187257 DOI: 10.3389/fphar.2024.1381406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Systemic chemotherapy is typically administered following radical gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel, and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat models employing nuclear medicine and molecular imaging technology. Method: Nine Sprague Dawley rats were divided into three groups: paclitaxel (n = 3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by conventional electrophilic radioiodination using tert-butylstannyl substituted paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were prepared using a desolvation technique. Liposome-encapsulated APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000, HSPC, and cholesterol. The rats in each group were injected with each test drug into the subserosa of the stomach antrum. After predetermined times (30 min, 2, 4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using single-photon emission computed tomography/computed tomography. Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in the stomach, with L-APNs showing the largest area under the curve. Most drugs administered via the gastric subserosal route are distributed in the stomach and intestines, with a low uptake of less than 1% in other major organs. The time to reach the maximum concentration in the intestine for L-APNs, paclitaxel, and APNs was 6.67, 5.33, and 4.00 h, respectively. Conclusion: These preliminary results imply that L-APNs have the potential to serve as a novel paclitaxel preparation method for the regional treatment of gastric cancer.
Collapse
Affiliation(s)
- Yoontaek Lee
- Department of Surgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- molim, Inc., Suwon, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
4
|
Jaradat E, Weaver E, Meziane A, Lamprou DA. Synthesis and Characterization of Paclitaxel-Loaded PEGylated Liposomes by the Microfluidics Method. Mol Pharm 2023; 20:6184-6196. [PMID: 37931072 DOI: 10.1021/acs.molpharmaceut.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
For cancer therapy, paclitaxel (PX) possesses several limitations, including limited solubility and untargeted effects. Loading PX into nanoliposomes to enhance PX solubility and target their delivery as a drug delivery system has the potential to overcome these limitations. Over the other conventional method to prepare liposomes, a microfluidic system is used to formulate PX-loaded PEGylated liposomes. The impact of changing the flow rate ratio (FRR) between the aqueous and lipid phases on the particle size and polydispersity index (PDI) is investigated. Moreover, the effect of changing the polyethylene glycol (PEG) lipid ratio on the particle size, PDI, stability, encapsulation efficiency % (EE %), and release profile is studied. The physicochemical characteristics of the obtained formulation were analyzed by dynamic light scattering, FTIR spectroscopy, and AFM. This work aims to use microfluidic technology to produce PEGylated PX-loaded liposomes with a diameter of <200 nm, low PDI < 0.25 high homogeneity, and viable 28 day stability. The results show a significant impact of FRR and PEG lipid ratio on the empty liposomes' physicochemical characteristics. Among the prepared formulations, two formulations produce size-controlled, low PDI, and stable liposomes, which make them preferable for PX encapsulation. The average EE % was >90% for both formulations, and the variation in the PEG lipid ratio affected the EE % slightly; a high packing for PX was reported at different drug concentrations. A variation in the release profiles was notified for the different PEG lipid ratios.
Collapse
Affiliation(s)
- Eman Jaradat
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, U.K
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, U.K
| | | | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, U.K
| |
Collapse
|
5
|
Rathnayake K, Patel U, Hunt EC, Singh N. Fabrication of a Dual-Targeted Liposome-Coated Mesoporous Silica Core-Shell Nanoassembly for Targeted Cancer Therapy. ACS OMEGA 2023; 8:34481-34498. [PMID: 37779923 PMCID: PMC10536893 DOI: 10.1021/acsomega.3c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Nanoparticles have been suggested as drug-delivery systems for chemotherapeutic drugs to allow for controlled drug release profiles and selectivity to target cancer cells. In addition, nanoparticles can be used for the in situ generation and amplification of reactive oxygen species (ROS), which have been shown to be a promising strategy for cancer treatment. Thus, a targeted nanoscale drug-delivery platform could be used to synergistically improve cancer treatment by the action of chemotherapeutic drugs and ROS generation. Herein, we propose a promising chemotherapy strategy where the drug-loaded nanoparticles generate high doses of ROS together with the loaded ROS-generating chemotherapeutic drugs, which can damage the mitochondria and activate cell death, potentiating the therapeutic outcome in cancer therapy. In the present study, we have developed a dual-targeted drug-delivery nanoassembly consisting of a mesoporous silica core loaded with the chemotherapeutic, ROS-generating drug, paclitaxel (Px), and coated with a liposome layer for controlled drug release. Two different lung cancer-targeting ligands, folic acid and peptide GE11, were used to target the overexpressed nonsmall lung cancer receptors to create the final nanoassembly (MSN@Px) L-GF. Upon endocytosis by the cancer cells, the liposome layer was degraded by the intracellular lipases, and the drug was rapidly released at a rate of 65% within the first 20 h. In vitro studies confirmed that this nanoassembly was 8-fold more effective in cancer therapy compared to the free drug Px.
Collapse
Affiliation(s)
- Kavini Rathnayake
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Emily C. Hunt
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Nirupama Singh
- Department of Chemistry, The
University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
6
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
7
|
Dutta P, Pramanik D, Singh JK. Phase Behavior of Pure PSPC and PEGylated Multicomponent Lipid and Their Interaction with Paclitaxel: An All-Atom MD Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10259-10271. [PMID: 34406778 DOI: 10.1021/acs.langmuir.1c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploring structural behavior of pure 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) and multicomponent PSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(poly(ethylene glycol))-2000] (DSPE-PEG2000) membranes and their interaction with pharmaceutically important drugs carry huge importance in drug delivery. Using all-atom molecular dynamics (MD) simulations, we investigated the phase behavior of pure and PEGylated membranes at the temperature range of 280-360 K. We observe a gel-to-liquid crystalline phase transition for pure PSPC between 320 and 330 K, and in the case of multicomponent membranes, at 320 K, a coexistence of order-disorder phases is observed, which gradually transform to a complete liquid crystalline to gel phase between 320 and 310 K. We further studied the interaction of Paclitaxel with pure PSPC and PEGylated bilayers and elucidated the interaction behavior of Paclitaxel at the bilayer interfaces. Understanding of structural and interaction behaviors of the PEGylated bilayers with Paclitaxel will help to explore Paclitaxel-based drug applications in the future.
Collapse
Affiliation(s)
- Prantar Dutta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Debabrata Pramanik
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Prescience Insilico Private Limited, Old Madras Road, Bangalore 560049, India
| |
Collapse
|
8
|
Si Y, Zhang Y, Ngo HG, Guan JS, Chen K, Wang Q, Singh AP, Xu Y, Zhou L, Yang ES, Liu X(M. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13153749. [PMID: 34359650 PMCID: PMC8345094 DOI: 10.3390/cancers13153749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Triple-negative breast cancers (TNBCs) are mainly treated with standard chemotherapies. Combined therapies have been demonstrated as a promising treatment strategy in clinics. The aim of this study was to develop a new formulation of combined chemotherapies facilitated with a targeted delivery vehicle. We found that the mertansine and gemcitabine with different anti-cancer mechanisms resulted in high cytotoxicity in TNBC cells. The in vivo evaluations using two TNBC xenograft models confirmed the anti-tumor efficacy, i.e., significantly reduced tumor growth rate. Furthermore, the antibody-tagged liposomes effectively delivered the therapeutic drugs to TNBC tumor, which could reduce the side effects. This study is highly translational and the targeted liposomal drug formulation can be further investigated in future clinical trials for TNBC treatment. Abstract Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Qing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (Y.X.)
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1808 7th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (H.G.N.); (K.C.); (Q.W.); (A.P.S.); (L.Z.)
- Correspondence:
| |
Collapse
|
9
|
Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Sci Rep 2021; 11:7311. [PMID: 33790325 PMCID: PMC8012651 DOI: 10.1038/s41598-021-86484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.
Collapse
|
10
|
Anticancer Activity of Pyrimethamine via Ubiquitin Mediated Degradation of AIMP2-DX2. Molecules 2020; 25:molecules25122763. [PMID: 32549310 PMCID: PMC7355952 DOI: 10.3390/molecules25122763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
While aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) is a tumor suppressor, its exon 2-depleted splice variant (AIMP2-DX2 or shortly DX2) is highly expressed in human lung cancer, and the ratio of DX2 to AIMP2 increases according to the progression of lung cancer. In this study, pyrimethamine inhibited the level of DX2 (IC50 = 0.73 µM) in A549 cells expressing nanoluciferase-tagged DX2. In a panel of 5 lung cancer cell lines with various DX2 levels, pyrimethamine most potently suppressed the growth of H460 cells, which express high levels of DX2 (GI50 = 0.01 µM). An immunoblot assay in H460 cells showed that pyrimethamine decreased the DX2 level dose-dependently but did not affect the AIMP2 level. Further experiments confirmed that pyrimethamine resulted in ubiquitination-mediated DX2 degradation. In an in vivo mouse xenograft assay using H460 cells, intraperitoneal administration of pyrimethamine significantly reduced the tumor size and weight, comparable with the effects of taxol, without affecting body weight. Analysis of tumor tissue showed a considerably high concentration of pyrimethamine with a decreased levels of DX2. These results suggest that pyrimethamine, currently used as anti-parasite drug, could be repurposed to treat lung cancer patients expressing high level of DX2.
Collapse
|
11
|
Sartaj A, Baboota S, Ali J. Nanomedicine: A Promising Avenue for the Development of Effective Therapy for Breast Cancer. Curr Cancer Drug Targets 2020; 20:603-615. [PMID: 32228423 DOI: 10.2174/1568009620666200331124113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most probable cancer among women. However, the available treatment is based on targeting different stages of breast cancer viz., radiation therapy, hormonal therapy, chemotherapy, and surgical interventions, which have some limitations. The available chemotherapeutics are associated with problems like low solubility, low permeability, high first-pass metabolism, and P-glycoprotein efflux. Hence, the aforementioned restrictions lead to ineffective treatment. Multiple chemotherapeutics can also cause resistance in tumors. So, the purpose is to develop an effective therapeutic regimen for the treatment of breast cancer by applying a nanomedicinal approach. METHODS This review has been conducted on a systematic search strategy, based on relevant literature available on Pub Med, MedlinePlus, Google Scholar, and Sciencedirect up to November 2019 using keywords present in abstract and title of the review. As per our inclusion and exclusion criteria, 226 articles were screened. Among 226, a total of 40 articles were selected for this review. RESULTS The significant findings with the currently available treatment is that the drug, besides its distribution to the target-specific site, also distributes to healthy cells, which results in severe side effects. Moreover, the drug is less bioavailable at the site of action; therefore, to overcome this, a high dose is required, which again causes side effects and lower the benefits. Nanomedicinal approaches give an alternative approach to avoid the associated problems of available chemotherapeutics treatment of breast cancer. CONCLUSION The nanomedicinal strategies are useful over the conventional treatment of breast cancer and deliver a target-specific drug-using different novel drug delivery approaches.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
12
|
Liposome Delivery of Natural STAT3 Inhibitors for the Treatment of Cancer. PHARMACEUTICAL FRONTIERS 2019; 1. [PMID: 31886474 DOI: 10.20900/pf20190007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the tumor microenvironment, cytokines, growth factors, and oncogenes mediate constitutive activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in both cancer cells and infiltrating immune cells. STAT3 activation in cancer cells drives tumorigenic changes that allow for increased survival, proliferation, and resistance to apoptosis. The modulation of immune cells is more complicated and conflicting. STAT3 signaling drives the myeloid cell phenotype towards an immune suppressive state, which mediates T cell inhibition. On the other hand, STAT3 signaling in T cells leads to proliferation and T cell activity required for an anti-tumor response. Targeted delivery of STAT3 inhibitors to cancer cells and myeloid cells could therefore improve therapeutic outcomes. Many compounds that inhibit the STAT3 pathways for cancer treatment include peptide drugs, small molecule inhibitors, and natural compounds. However, natural compounds that inhibit STAT3 are often hydrophobic, which reduces their bioavailability and leads to unfavorable pharmacokinetics. This review focuses specifically on liposome-encapsulated natural STAT3 inhibitors and their ability to target cancer cells and myeloid cells to reduce tumor growth and decrease STAT3-mediated immune suppression. Many of these liposome formulations have led to profound tumor reduction and examples of combination formulations have been shown to eliminate tumors through immune modulation.
Collapse
|
13
|
Liu SL, Sun XS, Li XY, Chen QY, Lin HX, Wen YF, Guo SS, Liu LT, Xie HJ, Tang QN, Liang YJ, Yan JJ, Lin C, Yang ZC, Tang LQ, Guo L, Mai HQ. Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer 2018; 18:1279. [PMID: 30572856 PMCID: PMC6302514 DOI: 10.1186/s12885-018-5192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Background We wished to evaluate the efficacy and safety of liposomal paclitaxel and docetaxel for induction chemotherapy (IC) for nasopharyngeal carcinoma (NPC). Methods A total of 1498 patients with newly-diagnosed NPC between 2009 and 2017 treated with IC plus concurrent chemotherapy were included in our observational study. Overall survival (OS), progression-free survival (PFS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS) and grade-3–4 toxicities were compared between groups using propensity score matching (PSM). Results In total, 767 patients were eligible for this study, with 104 (13.6%) and 663 (86.4%) receiving a liposomal paclitaxel-based and docetaxel-based taxanes, cisplatin and 5-fluorouracil (TPF) regimen, respectively. PSM identified 103 patients in the liposomal-paclitaxel group and 287 patients in the docetaxel group. There was no significant difference at 3 years for OS (92.2% vs. 93.9%, P = 0.942), PFS (82.6% vs. 81.7%, P = 0.394), LRFS (94.7% vs. 93.3%, P = 0.981) or DMFS (84.6% vs. 87.4%, P = 0.371) between the two groups after PSM. Significant interactions were not observed between the effect of chemotherapy regimen and sex, age, T stage, N stage, overall stage, or Epstein–Barr virus DNA level in the subgroup multivariate analysis. The prevalence of grade-3–4 leukopenia and neutropenia in the liposomal-paclitaxel group was significantly lower than that of the docetaxel group (P < 0.05 for all). Conclusions Compared with docetaxel, liposomal paclitaxel has identical anti-tumor efficacy, but causes fewer and milder adverse reactions in IC for NPC.
Collapse
Affiliation(s)
- Sai-Lan Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xue-Song Sun
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Yun Li
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Radiotherapy, Sun Yat-sen University Cancer Center
- , Guangzhou, Guangdong Province, People's Republic of China
| | - Yue-Feng Wen
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Shan-Shan Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Ting Liu
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao-Jun Xie
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Qing-Nan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yu-Jing Liang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Jie Yan
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Chao Lin
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhen-Chong Yang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling Guo
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|