1
|
Feng D, Liu M, Liu Y, Zhao X, Sun H, Zheng X, Zhu J, Shang F. Micheliolide suppresses the viability, migration and invasion of U251MG cells via the NF-κB signaling pathway. Oncol Lett 2020; 20:67. [PMID: 32863900 PMCID: PMC7436293 DOI: 10.3892/ol.2020.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
Micheliolide (MCL), a sesquiterpene lactone isolated from Michelia compressa and Michelia champaca, has been used previously to inhibit the NF-κB signaling pathway. MCL has exerted various therapeutic effects in numerous types of disease, such as inflammatory and cancer. However, to the best of our knowledge, its underlying anticancer mechanism remains to be understood. The present study aimed to investigate the effects of MCL on human glioma U251MG cells and to determine the potential anticancer mechanism of action of MCL. From Cell Counting Kit-8, colony formation assay, apoptosis assay and Confocal immunofluorescence imaging analysis, the results revealed that MCL significantly inhibited cell viability in vitro and induced cell apoptosis via activation of the cytochrome c/caspase-dependent apoptotic pathway. In addition, MCL also suppressed cell invasion and metastasis via the wound healing and Transwell invasion assays. Furthermore, western blot and reverse transcription PCR analyses demonstrated that MCL significantly downregulated cyclooxygenase-2 (COX-2) expression levels, which may have partially occurred through the inactivation of the NF-κB signaling pathway. In conclusion, the results of the present study indicated that MCL may inhibit glioma carcinoma growth by downregulating the NF-κB/COX-2 signaling pathway, which suggested that MCL may be a novel and alternative antitumor agent for the treatment of human glioma carcinoma.
Collapse
Affiliation(s)
- Dingkun Feng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Min Liu
- Department of Neurology, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yanting Liu
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Xiaojin Zhao
- Department of Gastroenterology, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huan Sun
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xu Zheng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiabin Zhu
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Fajun Shang
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
2
|
Liu J, Jiang M, Li Z, Zhang X, Li X, Hao Y, Su X, Zhu J, Zheng C, Xiao W, Wang Y. A Novel Systems Pharmacology Method to Investigate Molecular Mechanisms of Scutellaria barbata D. Don for Non-small Cell Lung Cancer. Front Pharmacol 2018; 9:1473. [PMID: 30618763 PMCID: PMC6304355 DOI: 10.3389/fphar.2018.01473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most ordinary type of lung cancer which leads to 1/3 of all cancer deaths. At present, cytotoxic chemotherapy, surgical resection, radiation, and photodynamic therapy are the main strategies for NSCLC treatment. However, NSCLC is relatively resistant to the above therapeutic strategies, resulting in a rather low (20%) 5-year survival rate. Therefore, there is imperative to identify or develop efficient lead compounds for the treatment of NSCLC. Here, we report that the herb Scutellaria barbata D. Don (SBD) can effectively treat NSCLC by anti-inflammatory, promoting apoptosis, cell cycle arrest, and angiogenesis. In this work, we analyze the molecular mechanism of SBD for NSCLC treatment by applying the systems pharmacology strategy. This method combines pharmacokinetics analysis with pharmacodynamics evaluation to screen out the active compounds, predict the targets and assess the networks and pathways. Results show that 33 compounds were identified with potential anti-cancer effects. Utilizing these active compounds as probes, we predicted that 145 NSCLC related targets mainly involved four aspects: apoptosis, inflammation, cell cycle, and angiogenesis. And in vitro experiments were managed to evaluate the reliability of some vital active compounds and targets. Overall, a complete overview of the integrated systems pharmacology method provides a precise probe to elucidate the molecular mechanisms of SBD for NSCLC. Moreover, baicalein from SBD effectively inhibited tumor growth in an LLC tumor-bearing mice models, demonstrating the anti-tumor effects of SBD. Our findings further provided experimental evidence for the application in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Zhihua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Xia Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - XiaoGang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Yuanyuan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Xing Su
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical, Co., Ltd., Lianyungang, China
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|