1
|
Jain A, Katiyar A, Singh R, Bakhshi S, Singh H, Palanichamy JK, Singh A. Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform.
Results
Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome.
Conclusions
The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.
Collapse
|
2
|
Akbulut S, Yagin FH, Colak C. Prediction of Breast Cancer Distant Metastasis by Artificial Intelligence Methods from an Epidemiological Perspective. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.62443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
3
|
Kohaar I, Zhang X, Tan SH, Nousome D, Babcock K, Ravindranath L, Sukumar G, Mcgrath-Martinez E, Rosenberger J, Alba C, Ali A, Young D, Chen Y, Cullen J, Rosner IL, Sesterhenn IA, Dobi A, Chesnut G, Turner C, Dalgard C, Wilkerson MD, Pollard HB, Srivastava S, Petrovics G. Germline mutation landscape of DNA damage repair genes in African Americans with prostate cancer highlights potentially targetable RAD genes. Nat Commun 2022; 13:1361. [PMID: 35292633 PMCID: PMC8924169 DOI: 10.1038/s41467-022-28945-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in all known DDRGs (N = 276) using whole genome sequences from blood DNA of a matched cohort of patients with primary prostate cancer comprising of 300 African American and 300 European Ancestry prostate cancer patients, to determine whether the mutation status can enhance patient stratification for specific targeted therapies. Here, we show that only 13 of the 46 DDRGs identified with pathogenic/likely pathogenic mutations are present in both African American and European ancestry patients. Importantly, RAD family genes (RAD51, RAD54L, RAD54B), which are potentially targetable, as well as PMS2 and BRCA1, are among the most frequently mutated DDRGs in African American, but not in European Ancestry patients.
Collapse
Affiliation(s)
- Indu Kohaar
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| | - Xijun Zhang
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Kevin Babcock
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gauthaman Sukumar
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Elisa Mcgrath-Martinez
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - John Rosenberger
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Camille Alba
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Amina Ali
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Denise Young
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Inger L Rosner
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | | | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gregory Chesnut
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Clesson Turner
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Clifton Dalgard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Matthew D Wilkerson
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Harvey B Pollard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Department of Biochemistry and Molecular & Cell biology, Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| |
Collapse
|
4
|
Zeng X, Li Z, Zhu C, Xu L, Sun Y, Han S. Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors. Drug Deliv 2021; 28:2329-2347. [PMID: 34730054 PMCID: PMC8567922 DOI: 10.1080/10717544.2021.1995081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the incidence of various types of tumors has gradually increased, and it has also been found that there is a certain correlation between abnormal glucose and lipid metabolism and tumors. Glycolipid metabolism can promote tumor progression through multiple pathways, and the expression of related genes also directly or indirectly affects tumor metabolism, metastasis, invasion, and apoptosis. There has been much research on targeted drug delivery systems designed for abnormal glucose and lipid metabolism due to their accuracy and efficiency when used for tumor therapy. In addition, gene mutations have become an important factor in tumorigenesis. For this reason, gene therapy consisting of drugs designed for certain specifically expressed genes have been transfected into target cells to express or silence the corresponding proteins. Targeted gene drug vectors that achieve their corresponding therapeutic purposes are also rapidly developing. The genes related to glucose and lipid metabolism are considered as the target, and a corresponding gene drug carrier is constructed to influence and interfere with the expression of related genes, so as to block the tumorigenesis process and inhibit tumor growth. Designing drugs that target genes related to glucose and lipid metabolism within tumors is considered to be a promising strategy for the treatment of tumor diseases. This article summarizes the chemical drugs/gene drug delivery systems and the corresponding methods used in recent years for the treatment of abnormal glucose and lipid metabolism of tumors, and provides a theoretical basis for the development of glucolipid metabolism related therapeutic methods.
Collapse
Affiliation(s)
- Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Chunrong Zhu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lisa Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|
6
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. Int J Mol Sci 2021; 22:ijms22105100. [PMID: 34065857 PMCID: PMC8151940 DOI: 10.3390/ijms22105100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
- Correspondence:
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
| | - Marzanna Ciesielka
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
8
|
Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front Oncol 2020; 10:572954. [PMID: 33194675 PMCID: PMC7653098 DOI: 10.3389/fonc.2020.572954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Tovar
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Laura Gómez-Romero
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | | | | | - Luis Alberto Alfaro-Ruíz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
9
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
10
|
Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, Falparado Ahmad A, Abdullah MA, Teh LK, Maniam S. Mitochondrial DNA mutations in Malaysian female breast cancer patients. PLoS One 2020; 15:e0233461. [PMID: 32442190 PMCID: PMC7244147 DOI: 10.1371/journal.pone.0233461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
Collapse
Affiliation(s)
- Raevathi Omasanggar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Choo Yee Yu
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Geik Yong Ang
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Aina Emran
- Department of General Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Normayah Kitan
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | - Anita Baghawi
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Tiphania Kotelawala J, Ranasinghe R, Rodrigo C, Tennekoon KH, Silva KD. Evaluation of non-coding region sequence variants and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in individuals of Sri Lankan Sinhalese ethnicity. Biomed Rep 2020; 12:339-347. [PMID: 32346478 DOI: 10.3892/br.2020.1292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations have been reported to be associated with various diseases, including cancer. The present study investigated the mtDNA non-coding region mutations and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in Sri Lankan Sinhalese women. Mitochondrial macro-haplogroups were determined using PCR-restriction fragment length polymorphism, whereas non-coding region sequences were determined using Sanger sequencing. The sequence of the non-coding region was also used to confirm haplogroup status. Neither the mutations in the non-coding region nor the mitochondrial haplogroups that were reported as risk factors in other populations, were determined to be potential risk factors for sporadic breast cancer in the present study. Furthermore, several novel mutations were identified in the present matched pairs case-controlled study. The M65a haplogroup with an additional mutation at position 16311 (P=0.0771) and mutations at the ori-b site (P=0.05) were considered a weak risk factor and protective factor, respectively, for sporadic breast cancer in Sinhalese women. Previous studies have indicated the use of mtDNA mutations as a biomarker; however, the present study showed that such biomarkers need to be validated for individual ethnic groups before they can be recommended for use in the prediction of disease.
Collapse
Affiliation(s)
- Joanne Tiphania Kotelawala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Chrishani Rodrigo
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kanishka De Silva
- National Cancer Institute, Apeksha Hospital, Maharagama 10280, Sri Lanka
| |
Collapse
|
12
|
Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes. Cancers (Basel) 2020; 12:cancers12010124. [PMID: 31947710 PMCID: PMC7016889 DOI: 10.3390/cancers12010124] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
A central characteristic of many types of cancer is altered energy metabolism processes such as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation. STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial activity. It seems that STAT proteins function as an integrative centre for different growth and survival signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that are involved in energy production in cancer cells.
Collapse
|
13
|
Prospective molecular mechanism of COL5A1 in breast cancer based on a microarray, RNA sequencing and immunohistochemistry. Oncol Rep 2019; 42:151-175. [PMID: 31059074 PMCID: PMC6549075 DOI: 10.3892/or.2019.7147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) has a complex etiology and pathogenesis, and is the most common malignant tumor type in females, in USA in 2018, yet its relevant molecular mechanisms remain largely unknown. The collagen type V α-1 chain (COL5A1) gene is differentially expressed in renal and ovarian cancer. Using bioinformatics methods, COL5A1 was determined to also be a significant gene in BC, but its association with BC has not been sufficiently reported. COL5A1 microarray and relevant clinical data were collected from the Gene Expression Omnibus, The Cancer Genome Atlas and other databases to summarize COL5A1 expression in BC and its subtypes at the mRNA and protein levels. All associated information was comprehensively analyzed by various software. The clinical significance of the mutation was obtained via the cBioPortal. Furthermore, Gene Ontology functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were also performed to investigate the mechanism of COL5A1 in BC. Immunohistochemistry was also conducted to detect and confirm COL5A1 expression. It was determined that COL5A1 was highly expressed in BC tissues, compared with normal tissues at the mRNA level [standard mean difference, 0.84; 95% confidence interval (CI), 0.60-1.07; P=0.108]. The area under the summary receiver operator characteristic curve for COL5A1 was 0.87 (95% CI, 0.84-0.90). COL5A1 expression was altered in 32/817 (4%) sequenced samples. KEGG analysis confirmed the most notable pathways, including focal adhesion, extracellular matrix-receptor interaction and regulation of the actin cytoskeleton. Immunohistochemical detection was used to verify the expression of COL5A1 in 136 selected cases of invasive BC tissues and 55 cases of adjacent normal tissues, while the rate of high expression of COL5A1 in BC was up to 90.4%. These results indicated that COL5A1 is highly expressed at the mRNA and protein levels in BC, and the prognosis of patients with BC with high COL5A1 expression may be reduced; therefore, COL5A1 may be used independently or combined with other detection factors in BC diagnosis.
Collapse
|