1
|
Janicka N, Sałek A, Sawińska M, Kuchar E, Wiela-Hojeńska A, Karłowicz-Bodalska K. Effects of Non-Opioid Analgesics on the Cell Membrane of Skin and Gastrointestinal Cancers. Int J Mol Sci 2022; 23:ijms23137096. [PMID: 35806101 PMCID: PMC9266389 DOI: 10.3390/ijms23137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Skin and gastrointestinal cancer cells are the target of research by many scientists due to the increasing morbidity and mortality rates around the world. New indications for drugs used in various conditions are being discovered. Non-opioid analgesics are worth noting as very popular, widely available, relatively cheap medications. They also have the ability to modulate the membrane components of tumor cells. The aim of this review is to analyze the impact of diclofenac, ibuprofen, naproxen, acetylsalicylic acid and paracetamol on skin and gastrointestinal cancers cell membrane. These drugs may affect the membrane through topical application, at the in vitro and in vivo level after oral or parenteral administration. They can lead to up- or downregulated expression of receptors, transporters and other molecules associated with plasma membrane. Medications may also alter the lipid bilayer composition of membrane, resulting in changes in its integrity and fluidity. Described modulations can cause the visualization of cancer cells, enhanced response of the immune system and the initiation of cell death. The outcome of this is inhibition of progression or reduction of tumor mass and supports chemotherapy. In conclusion, non-opioid analgesics may be used in the future as adjunctive therapy for the treatment of these cancers.
Collapse
Affiliation(s)
- Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (N.J.); (A.S.); (M.S.)
| | - Agnieszka Sałek
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (N.J.); (A.S.); (M.S.)
| | - Magdalena Sawińska
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (N.J.); (A.S.); (M.S.)
| | - Ernest Kuchar
- Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Anna Wiela-Hojeńska
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Karłowicz-Bodalska
- Department of Drugs Form Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
2
|
Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis 2021; 10:82. [PMID: 34845203 PMCID: PMC8630180 DOI: 10.1038/s41389-021-00373-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
Collapse
|
3
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
4
|
Rigotto G, Montini B, Mattiolo A, Lazzari N, Piano MA, Remondini D, Marmiroli S, Bertacchini J, Chieco-Bianchi L, Calabrò ML. Mechanisms Involved in the Promoting Activity of Fibroblasts in HTLV-1-Mediated Lymphomagenesis: Insights into the Plasticity of Lymphomatous Cells. Int J Mol Sci 2021; 22:10562. [PMID: 34638901 PMCID: PMC8508730 DOI: 10.3390/ijms221910562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Among the mechanisms leading to progression to Adult T-cell Leukaemia/Lymphoma in Human T-cell Leukaemia Virus type 1 (HTLV-1)-infected subjects, the contribution of stromal components remains poorly understood. To dissect the role of fibroblasts in HTLV-1-mediated lymphomagenesis, transcriptome studies, cytofluorimetric and qRT-PCR analyses of surface and intracellular markers linked to plasticity and stemness in coculture, and in vivo experiments were performed. A transcriptomic comparison between a more lymphomagenic (C91/III) and the parental (C91/PL) cell line evidenced hyperactivation of the PI3K/Akt pathway, confirmed by phospho-ELISA and 2-DE and WB analyses. C91/III cells also showed higher expression of mesenchymal and stemness genes. Short-term coculture with human foreskin fibroblasts (HFF) induced these features in C91/PL cells, and significantly increased not only the cancer stem cells (CSCs)-supporting CD10+GPR77+ HFF subpopulation, but also the percentage of ALDH1bright C91/PL cells. A non-cytotoxic acetylsalicylic acid treatment decreased HFF-induced ALDH1bright C91/PL cells, downregulated mesenchymal and stemness genes in cocultured cells, and delayed lymphoma growth in immunosuppressed mice, thus hindering the supportive activity of HFF on CSCs. These data suggest that crosstalk with HFF significantly intensifies the aggressiveness and plasticity of C91/PL cells, leading to the enrichment in lymphoma-initiating cells. Additional research is needed to better characterize these preliminary findings.
Collapse
Affiliation(s)
- Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, and Istituto Nazionale di Fisica Nucleare, INFN, 40127 Bologna, Italy;
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.M.); (J.B.)
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.M.); (J.B.)
| | - Luigi Chieco-Bianchi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| |
Collapse
|
5
|
Kong L, Zhang Q, Mao J, Cheng L, Shi X, Yu L, Hu J, Yang M, Li L, Liu B, Qian X. A dual-targeted molecular therapy of PP242 and cetuximab plays an anti-tumor effect through EGFR downstream signaling pathways in colorectal cancer. J Gastrointest Oncol 2021; 12:1625-1642. [PMID: 34532116 DOI: 10.21037/jgo-21-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) and its downstream Ras-mitogen-activated protein kinase kinase (MAPKK, MEK)-extracellular regulated protein kinase (ERK) signaling pathway and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway play important roles in the pathogenesis of colorectal cancer (CRC). The combination therapy of anti-EGFR and anti-mTOR needs to be explored. Methods Here we combined the anti-EGFR monoclonal antibody cetuximab (CTX) with the mTOR inhibitor PP242 in CRC cell lines and mouse xenograft models and discussed the changes of EGFR downstream signaling pathways of CRC cell lines. Results In HT-29 cells and Caco-2 cells, combined application of CTX and PP242 significantly inhibited the proliferation of CRC cells in vivo and in vitro. In BRAF wild-type Caco-2 cells, combined application of CTX and PP242 inhibited the activation of the EGFR and its downstream signaling pathways. Conclusions Our research further demonstrates the effectiveness of the combined application of CTX and PP242 in inhibiting CRC cell lines from the perspective of cell proliferation, cell cycle, apoptosis, and mouse xenografts. We revealed that the combined application of CTX and PP242 can inhibit tumor growth and proliferation by inhibiting the phosphorylation of key molecules in EGFR downstream MEK-ERK and MEK 4/7 (MKK)-c-Jun N-terminal kinase (JNK) signaling pathways in BRAF wild-type CRC cells. In addition, we found that in BRAF mutant CRC cells, the monotherapy of PP242 resulted in negative feedback increased EGFR phosphorylation rates, accompanied by significant up-regulation of downstream MEK and ERK phosphorylation.
Collapse
Affiliation(s)
- Linghui Kong
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jialei Mao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Cheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Hu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mi Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
6
|
Lei G, Liu S, Yang X, He C. TRIM29 Reverses Oxaliplatin Resistance of P53 Mutant Colon Cancer Cell. Can J Gastroenterol Hepatol 2021; 2021:8870907. [PMID: 33824865 PMCID: PMC8007381 DOI: 10.1155/2021/8870907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Oxaliplatin is the first-choice chemotherapy method for patients with advanced colon cancer. However, its resistance leads to treatment failure for many patients. In our experiments, we aim to elucidate the associations among TRIM29 protein, mutant P53, and the resistance of colon cancer cells to oxaliplatin. Methods HCT116 and HT-29 cells were cultured and transfected with plasmids pIRES2-ZsGreen1-TRIM29-flag. Western blot and real-time qRT-PCR were utilized to examine the protein and mRNA expressions of TRIM29 and other related markers, respectively. MTT assay was utilized to determine the cell growth rate and generate the inhibition curve. Continuous culture in low-concentration oxaliplatin was conducted to construct oxaliplatin-resistant cell lines. The coimmunoprecipitation method and immunofluorescence detection were used to examine the interaction between TRIM29 and mutant P53 protein in HT29 cells. Results We successfully transfected pIRES2-ZsGreen1-TRIM29-flag into HCT116 and HT29 cells, which were utilized in the whole experiments. TRIM29 significantly increased the sensitivity of P53 mutant colon cancer cell HT29 to oxaliplatin. The oxaliplatin-resistant model of P53 mutant colon cancer cell HT29 was successfully constructed. TRIM29 physically bound with mutant P53 and retained it in the cytoplasm from the nucleus, which inhibited its transcription function of downstream genes such as MDR1. In addition, TRIM29 successfully reversed the resistance of HT29-OX resistant cell model to oxaliplatin. Conclusion In mutant P53 colon cancer cell HT29, TRIM29 greatly increased the sensitivity of HT29 to oxaliplatin and reverse oxaliplatin resistance. The underlying mechanism is TRIM29 may increase the sensitivity of HT29 to oxaliplatin by blocking the transcriptional function of mutant P53, which inhibits the transcription function of its downstream gene such as MDR1.
Collapse
Affiliation(s)
- Guoqiong Lei
- Department of Neurosurgery, The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, China
| | - Sushun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
7
|
Fu X, Tan T, Liu P. Regulation of Autophagy by Non-Steroidal Anti-Inflammatory Drugs in Cancer. Cancer Manag Res 2020; 12:4595-4604. [PMID: 32606952 PMCID: PMC7305821 DOI: 10.2147/cmar.s253345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is the leading cause of death, placing a substantial global health burden. The development of the most effective treatment regimen is the unmet clinical need for cancer. Inflammation plays a role in tumorigenesis and progression, and anti-inflammation may be a promising option for cancer management and prevention. Emerging studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs) display anticarcinogenic and chemopreventive properties through the regulation of autophagy in certain types of cancer. In this review, we summarize the pharmacological functions and side effects of NSAIDs as chemotherapeutic agents, and focus on its mode of action on autophagy regulation, which increases our knowledge of NSAIDs and cancer-related inflammation, and contributes to a putative addition of NSAIDs in the chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- Xiangjie Fu
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tan Tan
- Translational Medicine Institute, The First Affiliated Hospital of Chenzhou, University of South China, Hunan, People’s Republic of China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Shanxi, People’s Republic of China
| |
Collapse
|