1
|
Nicolì V, Giangreco M, Pardini E, Petrini I, Bacchin D, Aprile V, Melfi F, Lucchi M, Guida M, Ricciardi R, Maestri M, Lari M, Migliore L, Stoccoro A, Coppedè F. DNA methylation analysis of multiple genes in thymic epithelial tumors. Epigenomics 2024; 16:1337-1350. [PMID: 39513235 PMCID: PMC11706250 DOI: 10.1080/17501911.2024.2419362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: To investigate DNA methylation levels of a panel of genes in thymic epithelial tumors (TETs).Materials & methods: We selected 15 genes among the most promising epigenetic biomarkers of TETs and evaluated their methylation levels in 71 TET samples.Results: thymic carcinomas (TCs) showed hypermethylation of GHSR and ELF3 genes and reduced IL1RN methylation levels compared with thymomas (TMs) and healthy thymic tissues. RAG1 was hypomethylated in TMs compared with healthy thymic tissues. No difference in the methylation levels of the investigated genes was seen among TM stages and subtypes. No changes in blood methylation levels of the investigated genes were seen among TET subtypes.Conclusion: The present study confirms GHSR, ELF3, IL1RN and RAG1 as TET epigenetic biomarkers.
Collapse
Affiliation(s)
- Vanessa Nicolì
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Marianna Giangreco
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Eleonora Pardini
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Diana Bacchin
- Thoracic Surgery, Department of Surgical, Medical & Molecular Pathology & Critical Care Medicine, University of Pisa, 56126, Pisa, Italy
| | - Vittorio Aprile
- Thoracic Surgery, Department of Surgical, Medical & Molecular Pathology & Critical Care Medicine, University of Pisa, 56126, Pisa, Italy
| | - Franca Melfi
- Minimally Invasive & Robotic Thoracic Surgery, Robotic Multispecialty Center of Surgery, University Hospital of Pisa, 56126, Pisa, Italy
| | - Marco Lucchi
- Thoracic Surgery, Department of Surgical, Medical & Molecular Pathology & Critical Care Medicine, University of Pisa, 56126, Pisa, Italy
| | - Melania Guida
- Neurology Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Roberta Ricciardi
- Neurology Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Martina Lari
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, 56126, Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, 56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, 56126, Pisa, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, 56126, Pisa, Italy
| |
Collapse
|
2
|
Pan Y, Wu L, He S, Wu J, Wang T, Zang H. Identification of hub genes and immune cell infiltration characteristics in chronic rhinosinusitis with nasal polyps: Bioinformatics analysis and experimental validation. Front Mol Biosci 2022; 9:843580. [PMID: 36060258 PMCID: PMC9431028 DOI: 10.3389/fmolb.2022.843580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of our study is to reveal the hub genes related to the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and their association with immune cell infiltration through bioinformatics analysis combined with experimental validation. In this study, through differential gene expression analysis, 1,516 upregulated and 1,307 downregulated DEG were obtained from dataset GSE136825 of the GEO database. We identified 14 co-expressed modules using weighted gene co-expression network analysis (WGCNA), among which the most significant positive and negative correlations were MEgreen and MEturquoise modules, containing 1,540 and 3,710 genes respectively. After the intersection of the two modules and DEG, two gene sets—DEG-MEgreen and DEG-MEturquoise—were obtained, containing 395 and 1,168 genes respectively. Through GO term analysis, it was found that immune response and signal transduction are the most important biological processes. We found, based on KEGG pathway enrichment analysis, that osteoclast differentiations, cytokine–cytokine receptor interactions, and neuroactive ligand–receptor interactions are the most important in the two gene sets. Through PPI network analysis, we listed the top-ten genes for the concentrated connectivity of the two gene sets. Next, a few genes were verified by qPCR experiments, and FPR2, ITGAM, C3AR1, FCER1G, CYBB in DEG-MEgreen and GNG4, NMUR2, and GNG7 in DEG-MEturquoise were confirmed to be related to the pathogenesis of CRSwNP. NP immune cell infiltration analysis revealed a significant difference in the proportion of immune cells between the NP group and control group. Finally, correlation analysis between target hub genes and immune cells indicated that FPR2 and GNG7 had a positive or negative correlation with some specific immune cells. In summary, the discoveries of these new hub genes and their association with immune cell infiltration are of great significance for uncovering the specific pathogenesis of CRSwNP and searching for disease biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yangwang Pan
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Bejing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yangwang Pan, ; Hongrui Zang,
| | - Linjing Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuai He
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongrui Zang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yangwang Pan, ; Hongrui Zang,
| |
Collapse
|
3
|
Huang Y, Luo W, Chen S, Su H, Zhu W, Wei Y, Qiu Y, Long Y, Shi Y, Wei J. Association of a Novel DOCK2 Mutation-Related Gene Signature With Immune in Hepatocellular Carcinoma. Front Genet 2022; 13:872224. [PMID: 35620462 PMCID: PMC9127407 DOI: 10.3389/fgene.2022.872224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality worldwide. Many studies have shown that dedicator of cytokinesis 2 (DOCK2) has a crucial role as a prognostic factor in various cancers. However, the potentiality of DOCK2 in the diagnosis of HCC has not been fully elucidated. In this work, we aimed to investigate the prognostic role of DOCK2 mutation in HCC. The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts were utilized to identify the mutation frequency of DOCK2. Then, univariate Cox proportional hazard regression analysis, random forest (RF), and multivariate Cox regression analysis were performed to develop the risk score that was significantly related to DOCK2 mutation. Moreover, Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune correlation analysis were conducted for an in-depth study of the biological process of DOCK2 mutation involved in HCC. The results revealed that the mutation frequency of DOCK2 was relatively higher than that in non-cancer control subjects, and patients with DOCK2 mutations had a low survival rate and a poor prognosis compared with the DOCK2-wild group. In addition, the secretin receptor (SCTR), tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing 1 (TANC1), Alkb homolog 7 (ALKBH7), FRAS1-related extracellular matrix 2 (FREM2), and G protein subunit gamma 4 (GNG4) were found to be the most relevant prognostic genes of DOCK2 mutation, and the risk score based on the five genes played an excellent role in predicting the status of survival, tumor mutation burden (TMB), and microsatellite instability (MSI) in DOCK2 mutant patients. In addition, DOCK2 mutation and the risk score were closely related to immune responses. In conclusion, the present study identifies a novel prognostic signature in light of DOCK2 mutation-related genes that shows great prognostic value in HCC patients; and this gene mutation might promote tumor progression by influencing immune responses. These data may provide valuable insights for future investigations into personalized forecasting methods and also shed light on stratified precision oncology treatment.
Collapse
Affiliation(s)
- Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Siyun Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuanyuan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yan Long
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yanxia Shi
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Thymic Epithelial Neoplasms: Focusing on the Epigenetic Alterations. Int J Mol Sci 2022; 23:ijms23074045. [PMID: 35409405 PMCID: PMC8999627 DOI: 10.3390/ijms23074045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
Thymic Epithelial Neoplasms (TENs) represent the most common tumors of the thymus gland. Epigenetic alterations are generally involved in initiation and progression of various cancer entities. However, little is known about the role of epigenetic modifications in TENs. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms thymoma, thymic carcinoma, thymic epithelial neoplasm, epigenetics, DNA methylation, HDAC and miRNA were employed and we were able to identify forty studies focused on TENs and published between 1997 and 2021. Aberrant epigenetic alterations seem to be involved in the tumorigenesis of thymomas and thymic carcinomas, with numerous studies reporting on non-coding RNA clusters and altered gene methylation as possible biomarkers in different types of TENs. Interestingly, Histone Deacetylase Inhibitors have shown potent antitumor effects in clinical trials, thus possibly representing effective epigenetic therapeutic agents in TENs. Additional studies in larger patient cohorts are, nevertheless, needed to verify the clinical utility and safety of novel epigenetic agents in the treatment of patients with TENs.
Collapse
|
5
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
6
|
Tegshee B, Kondo K, Soejima S, Muguruma K, Tsuboi M, Kajiura K, Kawakami Y, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GHSR methylation-dependent expression of a variant ligand and receptor of the ghrelin system induces thymoma tumorigenesis. Oncol Lett 2021; 22:793. [PMID: 34630704 PMCID: PMC8477069 DOI: 10.3892/ol.2021.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Our previous study reported that the DNA methylation of growth hormone secretagogue receptor (GHSR) was significantly higher in thymoma or thymic carcinoma (TC) than in normal thymic tissue samples. Thymic epithelial tumors (TETs) with higher GHSR DNA methylation were associated with significantly worse prognosis than those with lower levels of DNA methylation. Diversified components of the ghrelin-GHSR axis may exert opposing effects in cancer progression, depending on the cancer type in question. However, the precise function of the axis remains unclear. In the present study, the mRNA expression of five key components of the ghrelin system [native ligand ghrelin, variant ligand In-1 ghrelin, native receptor GHSR1a, variant receptor GHSR1b and acylation enzyme ghrelin O-acyltransferase (GOAT)] were examined in 58 TET samples by reverse transcription-quantitative PCR, and protein expression of GHSR1a and GHSR1b was assessed in 20 TETs using immunohistochemistry. The results revealed that In-1 ghrelin, GHSR1b (variant forms) and GOAT were more strongly expressed in thymoma compared with thymic-adjacent tissue. By contrast, no significant differences were observed in the expression of ghrelin and GHSR1a (native forms) between thymoma and thymic tissue. The mRNA expression of In-1 ghrelin and GHSR1b (variant forms) was positively associated with GHSR methylation in thymoma tissue samples. However, a relationship was not found between ghrelin, GHSR1a or GOAT expression (native forms) and GHSR methylation in thymoma. Immunohistochemical analysis revealed that mRNA expression of GHSR1a and GHSR1b generally correlated with expression of the corresponding protein, and that the expression of GHSR1b was increased in advanced-stage TETs. These results indicate that the DNA methylation of GHSR is associated with a shift from native expression (ghrelin and GHSR1a) to variant expression (In-1 ghrelin and GHSR1b), which induces the tumorigenesis of thymoma, but not TC.
Collapse
Affiliation(s)
- Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Hameed Y, Usman M, Liang S, Ejaz S. Novel diagnostic and prognostic biomarkers of colorectal cancer: Capable to overcome the heterogeneity-specific barrier and valid for global applications. PLoS One 2021; 16:e0256020. [PMID: 34473751 PMCID: PMC8412268 DOI: 10.1371/journal.pone.0256020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The heterogeneity-specific nature of the available colorectal cancer (CRC) biomarkers is significantly contributing to the cancer-associated high mortality rate worldwide. Hence, this study was initiated to investigate a system of novel CRC biomarkers that could commonly be employed to the CRC patients and helpful to overcome the heterogenetic-specific barrier. METHODS Initially, CRC-related hub genes were extracted through PubMed based literature mining. A protein-protein interaction (PPI) network of the extracted hub genes was constructed and analyzed to identify few more closely CRC-related hub genes (real hub genes). Later, a comprehensive bioinformatics approach was applied to uncover the diagnostic and prognostic role of the identified real hub genes in CRC patients of various clinicopathological features. RESULTS Out of 210 collected hub genes, in total 6 genes (CXCL12, CXCL8, AGT, GNB1, GNG4, and CXCL1) were identified as the real hub genes. We further revealed that all the six real hub genes were significantly dysregulated in colon adenocarcinoma (COAD) patients of various clinicopathological features including different races, cancer stages, genders, age groups, and body weights. Additionally, the dysregulation of real hub genes has shown different abnormal correlations with many other parameters including promoter methylation, overall survival (OS), genetic alterations and copy number variations (CNVs), and CD8+T immune cells level. Finally, we identified a potential miRNA and various chemotherapeutic drugs via miRNA, and real hub genes drug interaction network that could be used in the treatment of CRC by regulating the expression of real hub genes. CONCLUSION In conclusion, we have identified six real hub genes as potential biomarkers of CRC patients that could help to overcome the heterogenetic-specific barrier across different clinicopathological features.
Collapse
Affiliation(s)
- Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Usman
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Esfandiari F, Chitsazian F, Jahromi MG, Favaedi R, Bazrgar M, Aflatoonian R, Afsharian P, Aflatoonian A, Shahhoseini M. HOX cluster and their cofactors showed an altered expression pattern in eutopic and ectopic endometriosis tissues. Reprod Biol Endocrinol 2021; 19:132. [PMID: 34470627 PMCID: PMC8409001 DOI: 10.1186/s12958-021-00816-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
Endometriosis is major gynecological disease that affects over 10% of women worldwide and 30%-50% of these women have pelvic pain, abnormal uterine bleeding and infertility. The cause of endometriosis is unknown and there is no definite cure mainly because of our limited knowledge about its pathophysiology at the cellular and molecular levels. Therefore, demystifying the molecular mechanisms that underlie endometriosis is essential to develop advanced therapies for this disease. In this regard, HOX genes are remarkable because of their critical role in endometrial development and receptivity during implantation, which is attributed to their ability to mediate some of the sex steroid functions during the reproductive period. Access to the expression profiles of these genes would provide the necessary information to uncover new genes for endometriosis and assist with disease diagnosis and treatment. In this study we demonstrate an altered expression pattern for the HOX clusters (A-D) and their cofactors in both eutopic and ectopic conditions compared to control tissue biopsies. Remarkably, most of the intensive changes occurred in eutopic samples from endometriosis patients compared to control tissue biopsies. Pathway analysis revealed the involvement of differentially expressed genes in cancer that correlate with an association between endometriosis and cancer. Our results suggest critical roles for the HOX cluster and their cofactors in endometriosis pathophysiology.
Collapse
Affiliation(s)
- Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Chitsazian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Hafez St.Resalat Ave, P.O. Box, 19395-4644, Banihashem St.Tehran, No. 2, Iran
| | - Masoumeh Golestan Jahromi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Bouali Ave; Safaeyeh, Yazd, Iran
| | - Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Hafez St.Resalat Ave, P.O. Box, 19395-4644, Banihashem St.Tehran, No. 2, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Hafez St.Resalat Ave, P.O. Box, 19395-4644, Banihashem St.Tehran, No. 2, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Hafez St.Resalat Ave, P.O. Box, 19395-4644, Banihashem St.Tehran, No. 2, Iran
| | - Abbas Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Bouali Ave; Safaeyeh, Yazd, Iran.
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Hafez St.Resalat Ave, P.O. Box, 19395-4644, Banihashem St.Tehran, No. 2, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Calabrese F, Fortarezza F, Pezzuto F, Lunardi F, Comacchio G, Sbaraglia M, Pasello G, Marulli G, Dei Tos AP, Rea F. The Rarest of Rare Thymic Lesions: A 10-Year Surgical Pathology Experience. Cancers (Basel) 2021; 13:4056. [PMID: 34439210 PMCID: PMC8392427 DOI: 10.3390/cancers13164056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The thymus is a specialized primary lymphoid organ located in the midline pre-vascular mediastinum. The organ is the site of various pathological processes, neoplastic and not, whose rarity has not allowed in-depth studies on clinical or histological features of rarest and unusual variants. Herein, we report a 10-year Padova experience in the surgical pathology of the thymus, focusing on the pathological description of nonneoplastic lesions and rare epithelial and mesenchymal tumors recorded in our database, which comprises over 600 thymectomies. The extrapolated rare cases have been categorized into four groups that included 15 cysts, 18 carcinomas, 5 neuroendocrine tumors, and 2 soft tissue tumors. The cases are described from a clinical and pathological point of view and discussed in dedicated sections with a review of the most important literature. In this case, review series, we aim to update the epidemiology of these rare entities, improve diagnostic awareness, and finally, promote a collaborative network between referral centers.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| | - Giovanni Comacchio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| | - Marta Sbaraglia
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.S.); (A.P.D.T.)
| | - Giulia Pasello
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, 35121 Padova, Italy;
| | - Giuseppe Marulli
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paolo Dei Tos
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.S.); (A.P.D.T.)
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.); (F.L.); (G.C.); (F.R.)
| |
Collapse
|
10
|
Soejima S, Kondo K, Tsuboi M, Muguruma K, Tegshee B, Kawakami Y, Kajiura K, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GAD1 expression and its methylation as indicators of malignant behavior in thymic epithelial tumors. Oncol Lett 2021; 21:483. [PMID: 33968199 PMCID: PMC8100960 DOI: 10.3892/ol.2021.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Thymic epithelial tumors (TETs) comprise thymomas and thymic carcinoma (TC). TC has more aggressive features and a poorer prognosis than thymomas. Genetic and epigenetic alterations in thymomas and TC have been investigated in an attempt to identify novel target molecules for TC. In the present study, genome-wide screening was performed on aberrantly methylated CpG islands in thymomas and TC, and the glutamate decarboxylase 1 gene (GAD1) was identified as the 4th significantly hypermethylated CpG island in TC compared with thymomas. GAD1 catalyzes the production of γ-aminobutyric acid from L-glutamic acid. GAD1 expression is abundant in the brain but rare in other tissues, including the thymus. A total of 73 thymomas and 17 TC tissues were obtained from 90 patients who underwent surgery or biopsy at Tokushima University Hospital between 1990 and 2017. DNA methylation was examined by bisulfite pyrosequencing, and the mRNA and protein expression levels of GAD1 were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The DNA methylation levels of GAD1 were significantly higher in TC tissues than in the normal thymus and thymoma tissues, and GAD1 methylation exhibited high sensitivity and specificity for discriminating between TC and thymoma. The mRNA and protein expression levels of GAD1 were significantly higher in TC tissues than in thymomas. Patients with TET with high GAD1 DNA hypermethylation and high mRNA and protein expression levels had significantly shorter relapse-free survival rates than those with low levels. In conclusion, significantly more epigenetic alterations were observed in TC tissues compared with in thymomas, which may contribute to the clinical features and prognosis of patients.
Collapse
Affiliation(s)
- Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
11
|
Coppedè F, Ricciardi R, Lopomo A, Stoccoro A, De Rosa A, Guida M, Petrucci L, Maestri M, Lucchi M, Migliore L. Investigation of MLH1, MGMT, CDKN2A, and RASSF1A Gene Methylation in Thymomas From Patients With Myasthenia Gravis. Front Mol Neurosci 2020; 13:567676. [PMID: 33192293 PMCID: PMC7645111 DOI: 10.3389/fnmol.2020.567676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 01/07/2023] Open
Abstract
A feature of thymomas is their frequent association with myasthenia gravis (MG), an autoimmune disease characterized by the production of autoantibodies directed to different targets at the neuromuscular junction. Indeed, almost 30-40% of thymomas are found in patients with a type of MG termed thymoma-associated MG (TAMG). Recent studies suggest that TAMG-associated thymomas could represent a molecularly distinct subtype of thymic epithelial tumors (TETs), but few data are still available concerning the epigenetic modifications occurring in TAMG tissues. The promoter methylation levels of DNA repair (MLH1 and MGMT) and tumor suppressor genes (CDKN2A and RASSF1A) have been frequently investigated in TETs, but methylation data in TAMG tissues are scarce and controversial. To further address this issue, we investigated MLH1, MGMT, CDKN2A, and RASSF1A methylation levels in blood samples and surgically resected thymomas from 69 patients with TAMG and in the adjacent normal thymus available from 44 of them. Promoter methylation levels of MLH1, MGMT, CDKN2A, and RASSF1A genes were not increased in cancer with respect to healthy tissues and did not correlate with the histological or pathological features of the tumor or with the MG symptoms. The present study suggests that hypermethylation of these genes is not frequent in TAMG tissues.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.,Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy
| | - Angela Lopomo
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Loredana Petrucci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Song J, Yang J, Lin R, Cai X, Zheng L, Chen Y. Molecular heterogeneity of guanine nucleotide binding-protein γ subunit 4 in left- and right-sided colon cancer. Oncol Lett 2020; 20:334. [PMID: 33123245 PMCID: PMC7584031 DOI: 10.3892/ol.2020.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular heterogeneity determines the differences in the pathological features, prognosis and survival after relapse when comparing left-sided colon cancer (LCC) and right-sided colon cancer (RCC). At present, the discrepancy in the underlying molecular events between the two types of colon cancer has not been thoroughly investigated. The present study aimed to explore novel targets to predict the disease stage and prognosis of LCC and RCC. Expression analysis of guanine nucleotide binding-protein γ subunit 4 (GNG4) was performed using the Gene Expression Profiling Interactive Analysis (GEPIA) and Oncomine databases. Survival and association analyses were performed using GEPIA and the colon adenocarcinoma dataset from The Cancer Genome Atlas database. GNG4-positive cells in a tissue microarray were examined using immunohistochemistry. According to the GNG4 expression data from Caucasian patients included in the TCGA dataset, GNG4 was highly expressed and positively associated with pathological stage and overall survival (OS) rates in colon cancer. GNG4 expression was higher in LCC than in RCC. Patients with LCC with high GNG4 expression exhibited higher pathological stage and lower survival rates, whereas this was not observed in patients with RCC. In addition, the clinical tissues used in the microarray showed that GNG4 expression was increased in Chinese patients with LCC compared with that in patients with RCC. Consistently, GNG4 expression was negatively associated with OS in patients with LCC, but not in patients with RCC. However, no association was observed between GNG4 expression and the disease stage of colon cancer in both patients with LCC and RCC. Overall, the molecular heterogeneity of GNG4 in LCC and RCC suggests that GNG4 may be used as a diagnostic and prognostic biomarker in patients with LCC.
Collapse
Affiliation(s)
- Jintian Song
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Jianwei Yang
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Rongbo Lin
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Xiongchao Cai
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Liang Zheng
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Yigui Chen
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
13
|
Liu Z, Wan Y, Yang M, Qi X, Dong Z, Huang J, Xu J. Identification of methylation-driven genes related to the prognosis of papillary renal cell carcinoma: a study based on The Cancer Genome Atlas. Cancer Cell Int 2020; 20:235. [PMID: 32536823 PMCID: PMC7291558 DOI: 10.1186/s12935-020-01331-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Aberrant DNA methylation patterns are involved in the pathogenesis of papillary renal cell carcinoma (pRCC). This study aimed to investigate the potential of methylation-driven genes as biomarkers in determining the prognosis of pRCC by bioinformatics analysis. Methods DNA methylation and transcriptome profiling data were downloaded from The Cancer Genome Atlas database. Methylation-driven genes (MDGs) were obtained using MethylMix R package. A Cox regression model was used to screen for pRCC prognosis-related MDGs, and a linear risk model based on MDG methylation profiles was constructed. A combined methylation and gene expression survival analysis was performed to further explore the prognostic value of MDGs independently. Results A total of 31 MDGs were obtained. Univariate and multivariate Cox regression analysis identified eight genes (CASP1, CD68, HOXD3, HHLA2, HOXD9, HOXA10-AS, TMEM71, and PLA2G16), which were used to construct a predictive model associated with overall survival in pRCC patients. Combined DNA methylation and gene expression survival analysis revealed that C19orf33, GGT6, GIPC2, HHLA2, HOXD3, HSD17B14, PLA2G16, and TMEM71 were significantly associated with patients’ survival. Conclusion Through the analysis of MDGs in pRCC, this study identified potential biomarkers for precision treatment and prognosis prediction, and provided the basis for future research into the molecular mechanism of pRCC.
Collapse
Affiliation(s)
- Zeyu Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yuxiang Wan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ming Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xuewei Qi
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Zhenzhen Dong
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jinchang Huang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jingnan Xu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|