1
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
2
|
Alherz FA, El-Masry TA, Oriquat GA, Elekhnawy E, Al-Shaalan NH, Gaballa MMS, El Zahaby EI, El-Nagar MMF. Hesperidin Nanoformulation: A Potential Strategy for Reducing Doxorubicin-Induced Renal Damage via the Sirt-1/HIF1-α/VEGF/NF-κB Signaling Cascade. Pharmaceuticals (Basel) 2024; 17:1144. [PMID: 39338308 PMCID: PMC11435365 DOI: 10.3390/ph17091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hesperidin (Hes) functions as a strong antioxidant and anti-inflammatory to guard against damage to the heart, liver, and kidneys. Nevertheless, due to its restricted solubility and bioavailability, a delivery method is required for it to reach a specific organ. In this study, ion gelation was used to synthesize a chitosan/hesperidin nanoformulation. Numerous characterization techniques, such as zeta potential, particle size, XRD, TEM, SEM, and FTIR analyses, were used to corroborate the synthesis of hesperidin nanoparticles (Hes-NPs). Male albino mice were given a pretreatment dose of 100 mg/kg, PO, of Hes or Hes-NPs, which was administered daily for 14 days before the induction of doxorubicin nephrotoxicity on the 12th day. Kidney function (urea and creatinine levels) was measured. Lipid peroxidation (MDA) and antioxidant enzyme (CAT and SOD) activities were estimated. TNF-α, IL-1β, and VEGF content; histopathological examination of kidney tissue; and immunohistochemical staining of NF-κB, Caspase-3, BAX, Bcl-2, and TGF-β1 were evaluated. The gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were also considered. The results showed that pretreatment with Hes or Hes-NPs reduced doxorubicin's nephrotoxic effects, with Hes-NPs showing the greatest reduction. Kidney enzyme and MDA content were lowered in response to the Hes or Hes-NP pretreatment, whereas antioxidant enzyme activities were increased. Hes or Hes-NP pretreatment suppressed the levels of TNF-α, IL-1β, VEGF, NF-κB, Caspase-3, BAX, and TGF-β1; however, pretreatment increased Bcl-2 protein levels. Furthermore, the gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were considerably higher with Hes-NP than with Hes treatment. These results suggest that Hes-NP treatment might reduce DOX-induced nephrotoxicity in mice via modulating Sirt-1/HIF1-α/VEGF/NF-κB signaling to provide antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Ghaleb A. Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
3
|
Bueno MLP, Foglio MA, Baréa P, de Oliveira AR, Sarragiotto MH, Saad STO, Roversi FM. β-Carboline derivatives are potent against Acute Myeloid Leukemia in vitro and in vivo. Pharmacol Rep 2024; 76:838-850. [PMID: 38902478 DOI: 10.1007/s43440-024-00614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND β-carboline alkaloids exert a distinguished ability to impair cell growth and induce cell death in a variety of cancers and the evaluation of such new therapeutic candidates may denote new possibilities for leukemia treatment. In this present study, we screened 12 β-carboline derivatives containing different substituents at 1- and 3-positions of β-carboline nucleus for their antineoplastic activities in a panel of leukemia cell lines. METHODS The cytotoxic effects of the β-carboline derivatives were evaluated in different leukemia cell lines as well as reactive oxygen species (ROS) generation, autophagy, and important signaling pathways. RESULTS Treatment with the β-carboline derivatives resulted in a potent antineoplastic activity leading to a reduced cell viability that was associated with increased cell death in a concentration-dependent manner. Interestingly, the treatment of primary mononuclear cells isolated from the peripheral blood of healthy donors with the β-carboline derivatives showed a minor change in cell survival. The antineoplastic activity occurs by blocking ROS production causing consequent interruption of the PI3K/AKT and MAPK/ERK signaling and modulating autophagy processes. Notably, in vivo, AML burden was diminished in peripheral blood and bone marrow of a xenograft mouse model. CONCLUSIONS Our results indicated that β-carboline derivatives have an on-target malignant cell-killing activity and may be promising candidates for treating leukemia cells by disrupting crucial events that promote leukemia expansion and chemotherapy resistance.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Mary Ann Foglio
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Paula Baréa
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil.
- Division of Transplantation, Department of Surgery, Emory University, 101 Woodruff Circle, Atlanta, GA, 300322, USA.
| |
Collapse
|
4
|
Atta AH, Atta SA, Khattab MS, El-Aziz THA, Mouneir SM, Ibrahim MA, Nasr SM, Emam SR. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83421-83438. [PMID: 37341944 PMCID: PMC10359411 DOI: 10.1007/s11356-023-28146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Doxorubicin (DOX) is an anti-neoplastic therapy, but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. This work aimed at assessing the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of Wistar rats. Nephrotoxicity was induced experimentally by intraperitoneal (IP) injection of DOX (15 mg/kg). DOX increased serum creatinine, urea, sodium, and potassium levels. It elevated MDA levels in the renal tissue but decreased the concentration of GSH and the activity of GST, CAT, and SOD. Meanwhile, it decreased the level of immunomodulatory anti-inflammatory mediators: IL-10 and TGF-β, as well as the activity of MPO but increased the level of IL-6, TNF-α, and caspase-3 in the renal tissue. DOX has upregulated COX-2, caspase-9, and Bax gene expression and downregulated the Bcl-2 gene expression. Immunolabeling of renal tubular epithelium in DOX-intoxicated rats was moderate to strong against Bax, COX-2, and NF-kβ and weak against Bcl-2. Treatment with CME significantly restored the levels of kidney function parameters and the levels of oxidative stress markers. It stimulated the production of IL-10 and TGF-β and decreased the level of IL-6 and TNF-α. CME reverted the gene expression of COX-2, caspase-9, and Bax. Microscopically, CME alleviated the DOX-induced renal damage. Phytochemical analysis revealed the presence of 26 compounds in the CME. No signs of acute toxicity were recorded by CME up to 4000 mg/kg b. wt. orally into mice. Finally, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
Affiliation(s)
- Attia H. Atta
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Shimaa A. Atta
- Immunology Department, Theodor Belharz Research Institute, Giza, 12411 Egypt
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Tamer H. Abd El-Aziz
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Samar M. Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Marwa A. Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Soad M. Nasr
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Shimaa R. Emam
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| |
Collapse
|
5
|
Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, Mattioli EJ, Di Giosia M, Danielli A, Fimognari C, Calvaresi M. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells 2023; 12:cells12030392. [PMID: 36766734 PMCID: PMC9913797 DOI: 10.3390/cells12030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.
Collapse
Affiliation(s)
- Giulia Greco
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
- Correspondence: (C.F.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
- Correspondence: (C.F.); (M.C.)
| |
Collapse
|
6
|
Atta AH, Atta SA, Khattab M, El-aziz THA, Mouneir SM, Ibrahim M, Nasr SM, Ramadan S. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin – induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways.. [DOI: 10.21203/rs.3.rs-2217042/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Doxorubicin (DOX) is an effective antitumor therapy but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. The aim of this work was to assess the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of rats. Rats in groups 1and 2 were given normal saline while groups 3–5 were given Vitamin C (reference antioxidant, 250mg/kg), CME (500mg/kg) and CME (1000 mg/kg) for 5 days. On the 5th day, 1 hour after the last treatment dose, rats of groups 2–5 were given DOX in a dose of 15 mg/kg IP. DOX increased serum creatinine, urea, sodium and potassium and decreased GSH concentration, GST, CAT, SOD and MPO activities but increased MDA. It increased the inflammatory mediators (COX-2, IL-6, TNF-α, and NF-κβ) but decreased the anti-inflammatory cytokine (IL-10) and the Transforming growth factor-β (TGF-β). DOX has up-regulated COX-2, Caspase-3, Caspase-9, Bax and NF- κβ transcripts and down-regulated the anti-apoptotic Bcl-2 as assessed by immunohistochemistry and gene expression analysis. CME significantly improved the levels of kidney function parameters and restored the levels of the oxidative stress markers. It also decreased the level of COX-2, IL-6, TNF-α, and NF-κβ and stimulated the production of IL-10 and TGF-β. CME down-regulated the expression levels of the Bax, Cox-2 and caspases and up-regulated the anti-apoptotic Bcl-2. Microscopically, CME alleviated the DOX-induced renal damage in dose dependent manner. Phytochemical analysis revealed the presence of 26 compounds among which 4 major compounds (over 5%) in the CME. Acute toxicity test revealed that CME is not toxic up to 5 g/kg orally into rats. In conclusion, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
|
7
|
LncRNA-PAX8-AS1 Silencing Decreases Cell Viability, Enhances Apoptosis, and Suppresses Doxorubicin Resistance in Myeloid Leukemia via the miR-378g/ERBB2 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2295044. [PMID: 36248434 PMCID: PMC9560823 DOI: 10.1155/2022/2295044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022]
Abstract
Objective Considering the role of lncRNAs reported as regulators in acute myeloid leukemia (AML) progression, the current research aims to investigate the role of PAX8-AS1 in chemo-resistant AML. Methods Human AML cells HL60 and human doxorubicin (ADM)-resistant AML cells (HL60/ADM cells) were used to establish in vitro models of chemo-sensitive AML and refractory/recurrent AML, respectively. CCK-8 assay and flow cytometry were used to determine cell resistance to ADM, viability, and apoptosis. PAX8-AS1, miR-378g, and ERBB2 expressions in the models and/or AML patients were quantified via qRT-PCR or Western blot. The miRNA/mRNA axis targeted by PAX8-AS1 was analyzed using Starbase, TargetScan, or GEO and validated through a dual-luciferase reporter assay. The expressions of Bcl-2, Bax, and C Caspase-3 in cells were quantitated by Western blot. Results The highly expressed PAX8-AS1 was observed in AML patients and HL60 cells, which was more evident in refractory/recurrent AML patients and HL60/ADM cells. Compared with that in ADM-treated parental HL60 cells, the viability of ADM-treated HL60/ADM cells remained strong. PAX8-AS1 overexpression increased viability and Bcl-2 expression, while diminishing apoptosis, Bax, and C Caspase-3 expressions in HL60 cells. However, the abovementioned aspects were oppositely impacted by PAX8-AS1 silencing in HL60/ADM cells. PAX8-AS1 directly targeted miR-378g, whose expression pattern is opposite to that of PAX8-AS1 in AML. MiR-378g upregulation abrogated the effects of PAX8-AS1 overexpression on HL60 cells. MiR-378g downregulation offset PAX8-AS1 silencing-induced effects on HL60/ADM cells. Moreover, ERBB2 was recognized as the target of miR-378g, with a higher expression in HL60/ADM cells than in HL60 cells. Conclusion PAX8-AS1 silencing decreases cell viability, enhances apoptosis, and suppresses ADM resistance in AML via regulating the miR-378g/ERBB2 axis.
Collapse
|
8
|
Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022; 14:40-53. [PMID: 35441043 PMCID: PMC9013441 DOI: 10.32607/actanaturae.11523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Apoptosis plays a crucial role in chemotherapy-induced cell death. The conventional theory holding that apoptosis needs to be immunologically silent has recently been revised, and the concept of immunogenic cell death (ICD) has been proposed. This review describes the main features of ICD induction. These ICD markers are important for the effectiveness of anticancer therapy, as well as for basic research into cell death regulation. The mechanism of the "vaccination effect" of dying cancer cells undergoing ICD has been fully described, including the activation of specific antitumor response after re-challenge by the same living tumor cells. This review also discusses the whole set of molecular events attributing cell death to immunogenic type: the exposure of calreticulin and the heat shock protein HSP70 to the outer surface of the cell membrane and the release of the nuclear protein HMGB1 and ATP into the extracellular space. ICD inducers of various nature (chemotherapy drugs, cytotoxic proteins, and oncolytic viruses), as well as physical methods, are classified in the current review.
Collapse
Affiliation(s)
- O. S. Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. D. Novak
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| |
Collapse
|
9
|
Mahammad N, Ashcroft FJ, Feuerherm AJ, Elsaadi S, Vandsemb EN, Børset M, Johansen B. Inhibition of Cytosolic Phospholipase A2α Induces Apoptosis in Multiple Myeloma Cells. Molecules 2021; 26:molecules26247447. [PMID: 34946532 PMCID: PMC8705991 DOI: 10.3390/molecules26247447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosolic phospholipase A2α (cPLA2α) is the rate-limiting enzyme in releasing arachidonic acid and biosynthesis of its derivative eicosanoids. Thus, the catalytic activity of cPLA2α plays an important role in cellular metabolism in healthy as well as cancer cells. There is mounting evidence suggesting that cPLA2α is an interesting target for cancer treatment; however, it is unclear which cancers are most relevant for further investigation. Here we report the relative expression of cPLA2α in a variety of cancers and cancer cell lines using publicly available datasets. The profiling of a panel of cancer cell lines representing different tissue origins suggests that hematological malignancies are particularly sensitive to the growth inhibitory effect of cPLA2α inhibition. Several hematological cancers and cancer cell lines overexpressed cPLA2α, including multiple myeloma. Multiple myeloma is an incurable hematological cancer of plasma cells in the bone marrow with an emerging requirement of therapeutic approaches. We show here that two cPLA2α inhibitors AVX420 and AVX002, significantly and dose-dependently reduced the viability of multiple myeloma cells and induced apoptosis in vitro. Our findings implicate cPLA2α activity in the survival of multiple myeloma cells and support further studies into cPLA2α as a potential target for treating hematological cancers, including multiple myeloma.
Collapse
Affiliation(s)
- Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| | - Felicity J. Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Astrid J. Feuerherm
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
| | - Samah Elsaadi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Esten N. Vandsemb
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
| | - Magne Børset
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (S.E.); (E.N.V.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, 7491 Trondheim, Norway
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (F.J.A.); (A.J.F.)
- Correspondence: (N.M.); (B.J.)
| |
Collapse
|
10
|
Shen X, Zhang L, Xing S, Zhang XW, Xiong GL, Cong YW, Xiao H, Wang XR, Yu ZY. Inhibition of pyrimidine biosynthesis by strobilurin derivatives induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2021; 63:1202-1210. [PMID: 34877904 DOI: 10.1080/10428194.2021.2008382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
All-trans retinoic acid-based differentiation therapies have succeeded in the treatment of acute promyelocytic leukemia, which is a rare subtype of acute myeloid leukemia (AML). Their clinical efficacy is negligible, however, for other subtypes of AML. Here, we showed that strobilurin derivatives, a well-established class of inhibitors of mitochondrial electron transport chain (ETC) complex III, possessed differentiation-inducing activity in AML cells. Impairment of mitochondrial ETC activity was involved in the differentiation effects of strobilurin derivatives, where reactive oxygen species generation appeared unnecessary. Conversely, strobilurin derivative-mediated differentiation was triggered by pyrimidine deficiency, which resulted from the inhibition of the mitochondrial-coupled dihydroorotate dehydrogenase enzyme. Moreover, strobilurin derivative-mediated pyrimidine depletion led to the activation of the Akt/mTOR cascade, which was required for the differentiation. Our study provided evidence that strobilurin derivatives may represent a novel class of differentiation-inducing agents for the treatment of AML.
Collapse
Affiliation(s)
- Xing Shen
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Shuang Xing
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xue-Wen Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Zu-Yin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Pairoj S, Damrongsak P, Damrongsak B, Jinawath N, Kaewkhaw R, Ruttanasirawit C, Leelawattananon T, Locharoenrat K. Antitumor activities of carboplatin-doxorubicin-ZnO complexes in different human cancer cell lines (breast, cervix uteri, colon, liver and oral) under UV exposition. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:120-135. [PMID: 33491496 DOI: 10.1080/21691401.2021.1876718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the pharmacological profiles of multiple chemo drug candidates in systematic circulation to enhance their specific interactions with five human cancer cell lines. ZnO nanoparticles were successfully bound with chemo drugs via physical adsorption. The drug loading capacity was confirmed by FTIR, whereas the loading efficiency was determined via UV-vis spectrometry. The mean hydrodynamic size increased to 69-82 nm after chemo-drug immobilization via non-covalent interaction with ZnO. Among the nine formulated chemo drugs, the carboplatin (CP)-doxorubicin (DOX)-ZnO complex under UV light irradiation exhibited high sensitivity towards human breast adenocarcinoma cells without affecting human keratinocyte immortal cells with an IC50 of 0.137 µg/mL, whereas the loading capacity and efficiency of CP-DOX-ZnO were 77.81% and 99.05%, respectively. Fluorescence images confirmed that CP-DOX-ZnO using DOX served as a fluorescence enhancer specifically bound onto the cell membranes, which became almost saturated after 24 h incubation. Carboplatin-DOX-ZnO was possibly endocytosed by cancer cells and was selectively internalized into the target cells; thus, free chemo drug was released in the cytoplasm, which induced acute apoptosis. This resulted in complete inhabitation of growth signal of target cancer cells.
Collapse
Affiliation(s)
- Suttirak Pairoj
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pattareeya Damrongsak
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Badin Damrongsak
- Department of Physics, Faculty of Science, Silpakorn University, Nakornpathom, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Rossukon Kaewkhaw
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Chinnapat Ruttanasirawit
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tanaporn Leelawattananon
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Kitsakorn Locharoenrat
- Department of Physics, Faculty of Science, Biomedical Physics Research Unit, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
12
|
Betulinic Acid-Doxorubicin-Drug Combination Induced Apoptotic Death via ROS Stimulation in a Relapsed AML MOLM-13 Cell Model. Antioxidants (Basel) 2021; 10:antiox10091456. [PMID: 34573088 PMCID: PMC8471649 DOI: 10.3390/antiox10091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
In this study, cell death regulation and induction in AML cell line from a relapsed MLL-rearranged cell model (MOLM-13) was investigated with doxorubin (Dox) and betulinic acid (BetA), singly and in combination. CyQUANT Direct® and Annexin V/propidium iodide double staining were used to measure the cytotoxic and cell death induction effects of the compounds, respectively. Reactive oxygen species (ROS) generation was measured using 2′,7′-dichlorofluorescin diacetate staining. Expressions of proteins and genes were examined by Western blot and reverse transcription polymerase chain reaction analysis, respectively. BetA (20 μM) and Dox (1 μM) indicated a synergistic growth inhibitory effect on MOLM-13 cells. The combined drug caused more cells to reside in irreversible late apoptotic stage compared to the single treatments (p < 0.05). Elevation in ROS may be the synergistic mechanism involved in MOLM-13 cell death since ROS can directly disrupt mitochondrial activity. In contrast, in leukaemic U-937 cells, the combination treatments attenuated Dox-induced cell death. Dox and the drug combination selectively reduced (p < 0.05) a recently reported anti-apoptotic Bcl-2 protein isoform p15-20-Bcl-2 in MOLM-13 by our group, without affecting the usually reported p26-Bcl-2-α. Further studies using known inhibitors of apoptosis are required to confirm the potential of Dox-BetA combination to modulate these pathways.
Collapse
|
13
|
Zhang L, Feng M, Wang X, Zhang H, Ding J, Cheng Z, Qian L. Peptide Szeto‑Schiller 31 ameliorates doxorubicin‑induced cardiotoxicity by inhibiting the activation of the p38 MAPK signaling pathway. Int J Mol Med 2021; 47:63. [PMID: 33649779 PMCID: PMC7914074 DOI: 10.3892/ijmm.2021.4896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress serves a key role in doxorubicin (DOX)-induced cardiotoxicity. The peptide Szeto-Schiller (SS)31 is an efficacious antioxidant with the capacity to reduce mitochondrial reactive oxygen species (ROS) levels and scavenge free radicals. Although SS31 is involved in the pathophysiological process of various cardiovascular diseases, the role of SS31 in DOX-induced cardiotoxicity remains unclear. To explore the effects of SS31 in DOX-induced cardiotoxicity, the present study first constructed DOX-induced cardiotoxicity models, in which H9c2 cells were incubated with 1 μM DOX for 24 h and C57BL/6 mice were administered DOX (20 mg/kg cumulative dose). The results of various assays in these models demonstrated that SS31 exhibited a cardioprotective effect in vitro and in vivo by attenuating the level of ROS, stabilizing the mitochondrial membrane potential and ameliorating myocardial apoptosis as well as fibrosis following treatment with DOX. Mechanistically, the results of the present study revealed that the p38 MAPK signaling pathway was inhibited by SS31 in DOX-treated H9c2 cells, which was associated with the cardioprotective function of SS31. In addition, P79350, a selective agonist of p38 MAPK, reversed the protective effects of SS31. Taken together, these results demonstrated the effects of SS31 on ameliorating DOX-induced cardiotoxicity and indicated its potential as a drug for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xuejun Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Zhang
- Department of Internal Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jingjing Ding
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingmei Qian
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
14
|
Bai Z, Ding N, Ge J, Wang Y, Wang L, Wu N, Wei Q, Xu S, Liu X, Zhou G. Esomeprazole overcomes paclitaxel-resistance and enhances anticancer effects of paclitaxel by inducing autophagy in A549/Taxol cells. Cell Biol Int 2020; 45:177-187. [PMID: 33049093 DOI: 10.1002/cbin.11481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and the occurrence of drug-resistance severely limits the efficacy of anticancer drugs in the treatment of NSCLC. Identification of new agents to reverse drug-resistance in NSCLC treatment is of great importance and urgency both clinically and scientifically. In the present study, we found that A549/Taxol cells displayed a high level of resistance to paclitaxel with the resistance index up to 231. Importantly, esomeprazole could potentiate the antiproliferative effect of paclitaxel in A549/Taxol cells, but not in A549 cells. Further exploration on the underlying mechanisms revealed that esomeprazole decreased the intracellular pH via inhibiting V-ATPase expression in A549/Taxol cells. Meanwhile, esomeprazole pretreatment significantly promoted paclitaxel-induced polymerization of tubulin and enhanced the proportion of G2/M-arrested cells in A549/Taxol cells. Unfortunately, esomeprazole could only result in a slight decrease in the expression of P-gp in A549/Taxol cells. Interestingly, esomeprazole significantly increased paclitaxel-induced apoptosis, which was impeded by the autophagy inhibitor 3-MA in A549/Taxol cells. Taken together, our data suggest that esomeprazole is a promising chemosensitizer against paclitaxel-resistant NSCLC by inducing autophagy. Our study also offers a new strategy to solve the paclitaxel-resistance problem during NSCLC treatment.
Collapse
Affiliation(s)
- Zhaoshi Bai
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Nianyang Ding
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Jianjuan Ge
- Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nanjing, Jiangsu, China
| | - Yue Wang
- Clinical Medicine Research Institution, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Nan Wu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Qing Wei
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Silu Xu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xiaolin Liu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Guoren Zhou
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| |
Collapse
|