1
|
Ding Y, Wang X, Shu F, Pan K, Chen X, Liu Q. PODXL promotes malignant progression of hepatocellular carcinoma by activating PI3K/AKT pathway. J Mol Histol 2024; 55:1107-1120. [PMID: 39198365 DOI: 10.1007/s10735-024-10253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Hepatocellular carcinoma (HCC) presents challenges due to inadequate early monitoring and diagnostic precision, resulting in rising incidence and mortality rates. Identifying reliable predictive biomarkers is imperative. This study investigates PODXL expression in HCC and its mechanisms in tumor onset and progression. Clinical samples were analyzed for PODXL expression in HCC tissues, correlating with clinical features and prognosis. In vitro experiments and bioinformatics analysis validated PODXL's role in HCC, particularly in HCCLM3 cells, highlighting its impact on proliferation, invasion, and metastasis. Enhanced PODXL expression, associated with poor prognosis, was observed in HCC tissues and cells. Downregulating PODXL reduced HCCLM3 cell proliferation, invasion, and migration, while promoting apoptosis. Bioinformatics analysis linked abnormal PODXL expression to the PI3K/AKT pathway. Moreover, PODXL downregulation and PI3K/AKT activation verified PODXL's role in promoting HCCLM3 cell progression via this pathway. This study underscores PODXL's significance in HCC prognosis and suggests its potential as a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University,, Ganzhou, Jiangxi, 341000, China
| | - Xiaoqing Wang
- Department of Psychiatry, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Fei Shu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University,, Ganzhou, Jiangxi, 341000, China
| | - Kehua Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University,, Ganzhou, Jiangxi, 341000, China
| | - Xiaohong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University,, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
2
|
Wang X, Yu Q, Bai X, Li X, Sun Y, Peng X, Zhao R. The role of the purinergic ligand-gated ion channel 7 receptor in common digestive system cancers. Eur J Cancer Prev 2024; 33:271-281. [PMID: 37942897 DOI: 10.1097/cej.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The incidence of digestive malignancies has increased in recent years, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pancreatic cancer. Advanced stages of these cancers are prone to metastasis, which seriously reduce the standard of living of patients and lead to decline in the survival rate of patients. So far there are no good specific drugs to stop this phenomenon. It is very important and urgent to find new biomarkers and therapeutic targets. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is ATP-gated and nonselective ion channel receptor involved in many inflammatory processes and cancer progression. P2X7R is present in many cancer cells and promotes or inhibits cancer development through signal transduction. Studies have presented that P2X7R plays a role in the proliferation and migration of digestive system cancers, such as CRC, HCC and pancreatic cancer. Therefore, P2X7R may serve as a biomarker or therapeutic target for digestive system cancers. This paper describes the structure and function of P2X7R, and mainly reviews the research progress on the role of P2X7R in CRC, HCC and pancreatic cancer.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Qingqing Yu
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Razaq H, Mehwish N, Xia J, Feng C. NDI based C2-symmetric Chiral Supramolecular Hydrogels Towards Enhanced Conductivity. Chemistry 2024; 30:e202302912. [PMID: 38010920 DOI: 10.1002/chem.202302912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
To comprehend the significance of improved conductive properties in C2-symmetric hydrogels, it is vital to investigate how non-gelating achiral functional group isomers influence the conductivity of such supramolecular hydrogels, whereas understanding the major driving forces behind this regulatory process is first and foremost. Herein, we report a hydrogel system containing tryptophan-conjugated NDI as the backbone (L/D-NTrp), enabling effective supramolecular assembly with the bipyridyl functional group isomers. This co-assembly behavior results in materials with exceptional mechanical properties and high conductivities, surpassing most previously reported C2-symmetrical hydrogels, as well as the ability to form controlled morphologies. Notably, the co-hydrogels displayed an eight-fold increase in mechanical strength, making them more robust and resistant to deformation compared to the original gel. Additionally, all hydrogels exhibited favorable electrical conductivity, with the co-assembled hydrogels showcasing notable performance, making them a promising candidate for use in electronic devices and sensors. This report lays the foundation for further investigation into the properties and potential applications of L/D-NTrp compound in the range of fields, including drug delivery, tissue engineering, and electronics.
Collapse
Affiliation(s)
- Hamaela Razaq
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Nabila Mehwish
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| |
Collapse
|
4
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
5
|
Zhang Y, Xiong W, Yang C, Li P, Tong H. Circ-FNDC3B Functions as an Oncogenic Factor in Esophageal Squamous Cell Carcinoma via Upregulating MYO5A by Absorbing miR-136-5p and miR-370-3p. Biochem Genet 2023; 61:1917-1936. [PMID: 36884165 DOI: 10.1007/s10528-023-10354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Circular RNAs (circRNAs) are a class of key regulators in cancers via regulating gene levels by acting as sponges of miRNAs. This study was devoted to explore the functional mechanism of circRNA fibronectin type III domain-containing protein 3B (circ-FNDC3B) in esophageal squamous cell carcinoma (ESCC). RNA levels were examined via reverse transcription-quantitative polymerase chain reaction assay. Cell viability detection was performed using Cell Counting Kit-8 assay. The proliferation ability was determined through colony formation assay and EDU assay. Flow cytometry was applied for analysis of apoptosis. Invasion ability was assessed via transwell assay. Target binding was analyzed by dual-luciferase reporter assay. The protein expression was measured using western blot. In vivo research was conducted via xenograft model in mice. Circ-FNDC3B exhibited significant upregulation in ESCC tissues and cells. Downregulation of circ-FNDC3B inhibited ESCC cell proliferation and invasion but accelerated cell apoptosis. Circ-FNDC3B interacted with miR-136-5p or miR-370-3p. The function of circ-FNDC3B was achieved by sponging miR-136-5p or miR-370-3p. Myosin VA (MYO5A) acted as a downstream target of miR-136-5p or miR-370-3p. MYO5A reversed miR-136-5p/miR-370-3p-induced tumor inhibition in ESCC cells. Circ-FNDC3B targeted miR-136-5p or miR-370-3p to affect MYO5A expression. Circ-FNDC3B knockdown reduced tumor growth in vivo by inhibiting miR-136-5p or miR-370-3p-mediated MYO5A expression. These findings demonstrated that circ-FNDC3B contributed to malignant progression of ESCC cells via miR-136-5p/MYO5A or miR-370-3p/MYO5A axis.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Wei Xiong
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Chunping Yang
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Ping Li
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China
| | - Huajie Tong
- Department of Cardiothoracic Surgery, Zigong First People's Hospital, No.42nd, ShangYiHao Branch 1st, Zi Liu Jing District, Zigong City, 643000, Sichuan Province, China.
| |
Collapse
|
6
|
Zhang Z, Qin S, Wang R, Fang Z, Wang Y, Li F. Circ_0003575 knockdown alleviates ox-LDL-induced human aortic endothelial cell dysfunction in atherosclerosis by miR-637/TRAF6 axis. Clin Hemorheol Microcirc 2023; 85:173-187. [PMID: 37599528 DOI: 10.3233/ch-231858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the progression of atherosclerosis (AS). The present study aimed to determine the functions and mechanism of circ_0003575 in AS. METHODS Oxidized low-density lipoprotein (ox-LDL) was used to induce human aortic endothelial cells (HAECs) to establish an AS cell model. Cell Counting Kit-8 (CCK-8) assay and 5'-ethynyl-2'-deoxyuridine (EdU) assay were conducted to assess cell proliferation. Flow cytometry analysis was utilized to quantify cell apoptosis. Tube formation assay was performed to analyze angiogenesis ability. Enzyme linked immunosorbent assay (ELISA) was used to examine the concentrations of inflammatory factors. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were manipulated for the expression of circ_0003575, microRNA-637 (miR-637) and TNF receptor associated factor 6 (TRAF6). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were adopted to estimate the downstream targets of circ_0003575. RESULTS Ox-LDL treatment repressed the proliferation and angiogenesis and promoted the apoptosis and inflammation in HAECs. Circ_0003575 knockdown ameliorated ox-LDL-induced injury of HAECs. Circ_0003575 interacted with mi-R-637, which directly targeted TRAF6. Inhibition of miR-637 reversed the impacts of circ_0003575 knockdown on HAEC injury. Moreover, miR-637 overexpression promoted cell proliferation and angiogenesis and inhibited cell apoptosis and inflammation by targeting TRAF6 in ox-LDL-treated HAECs. Further, circ_0003575 silencing inhibited the activation of NF-κB pathway. CONCLUSION Circ_0003575 knockdown alleviated ox-LDL-induced HAEC damage by regulating miR-637/TRAF6 and NF-κB pathways.
Collapse
Affiliation(s)
- Zhanshuai Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| | - Shaoqiang Qin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| | - Rui Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| | - Zhiqin Fang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| | - Yaling Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| | - Fangjiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, China
| |
Collapse
|
7
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
8
|
Zhang K, Fan R, Zhao D, Liu P, Yang Z, Liu J, Zhang S, Rao S, Wang Y, Wan L. CircATIC
inhibits esophageal carcinoma progression and promotes radiosensitivity by elevating
RHCG
through sponging
miR‐10‐3p. Thorac Cancer 2022; 13:934-946. [PMID: 35307984 PMCID: PMC8977172 DOI: 10.1111/1759-7714.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Kai Zhang
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ruitai Fan
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Deyao Zhao
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Peipei Liu
- Department of Respiratory and Critical Care Medicine Nanyang Central Hospital Nanyang Henan China
| | - Zheng Yang
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Junqi Liu
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Song Zhang
- Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Shilei Rao
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Yang Wang
- Department of Radiotherapy Nanyang Central Hospital Nanyang Henan China
| | - Lixin Wan
- Department of Oncology Nanyang Central Hospital Nanyang Henan China
| |
Collapse
|
9
|
Bao Y, Yao Y, Wang Z, Wu S, Jiang X, Ma H. Analysis of mRNA and circRNA Expression Profiles of Bovine Monocyte-Derived Macrophages Infected With Mycobacterium avium subsp. paratuberculosis. Front Microbiol 2022; 12:796922. [PMID: 35046920 PMCID: PMC8761944 DOI: 10.3389/fmicb.2021.796922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen of Johne’s disease (paratuberculosis), which mainly causes chronic infectious granulomatous enteritis in ruminants and has brought huge economic losses to animal husbandry. As a specific intracellular pathogen, when MAP invades the body, it is internalized by macrophages where it is able to replicate by inhibition of the phagosome maturation, escaping the host immune system and surviving, which leads to the spread of the disease. More recent studies have shown that circRNA is involved in many pathological and physiological processes of the body as the molecular sponge of miRNA, the scaffold of RNA binding protein and having the characteristic of being able to translate into protein. In this study, the mRNA and circRNA expression profiles of MAP-infected bovine monocyte-macrophages and uninfected bovine cells were analyzed by high-throughput sequencing. A total of 618 differentially expressed mRNA were screened out, including 322 upregulated mRNA and 296 downregulated mRNA. In addition, the analysis of circRNA differential expression profile showed 39 differentially expressed genes including 12 upregulated and 27 downregulated genes. Moreover, differential genes belonging to cytokine activity, chemokine activity, inflammatory reaction, apoptosis, and other functional groups related to macrophage immune response were significantly enriched in Gene Ontology (GO). Multiple signal pathways including NF-κB, MAPK, Toll-like receptor, IL-17, JAK-STAT, and other signaling pathways related to activating macrophage immune response were significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, RT-qPCR technology verified the accuracy of the mRNA sequencing results. In this study, we have obtained the transcriptome information of mRNA and circRNA of bovine monocyte-macrophage infected with MAP. These results will provide data support for the further study of mRNA–miRNA–circRNA network and immune escape mechanism of MAP and will enrich the knowledge of the molecular immune mechanisms of Johne’s disease as well.
Collapse
Affiliation(s)
- Yanhong Bao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yu Yao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Shuiyin Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xiuyun Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, China.,College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Hongxia Ma
- College of Animal Medicine, Jilin Agricultural University, Changchun, China.,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Liu M, Zhao J. Circular RNAs in Diabetic Nephropathy: Updates and Perspectives. Aging Dis 2022; 13:1365-1380. [PMID: 36186139 PMCID: PMC9466972 DOI: 10.14336/ad.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are widespread endogenous transcripts lacking 5′-caps and 3′-polyadenylation tails. Their closed-loop structure confers exonuclease resistance and extreme stability. CircRNAs play essential roles in various diseases, including diabetes. Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and is one of the most common complications of diabetes. CircRNAs are key in DN and therefore important for understanding DN pathophysiology and developing new therapeutic strategies. In the present review, we briefly introduce the characteristics and functions of circRNAs and summarize recent discoveries on how circRNAs participate in DN. Based on these advances, we suggest future perspectives for studying circRNAs in DN to improve DN treatment and management.
Collapse
Affiliation(s)
| | - Junli Zhao
- Correspondence should be addressed to: Dr. Junli Zhao, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China. E-mail: .
| |
Collapse
|
11
|
Huang CQ, Yang P, Liu J, Wang YP, Hao DD, Yang X. Circular RNA circ_0000423 promotes gastric cancer cell proliferation, migration and invasion via the microR-582-3p/Disheveled-Axin domain containing 1 axis. Bioengineered 2021; 12:12755-12766. [PMID: 34898351 PMCID: PMC8809952 DOI: 10.1080/21655979.2021.1997696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For humans, gastric cancer (GC) is a common malignancy. Multiple circular RNAs (circRNAs) have been confirmed to be important cancer-promoting or tumor-suppressive factors. The present study discusses the roles and mechanisms of circ_0000423 in GC development. In this study, circ_0000423 expression in GC patient tissue samples and cell lines was detected via quantitative real-time polymerase chain reaction. Disheveled-Axin domain containing 1 (DIXDC1) expression in GC cells was examined via Western blot. Besides, cell counting kit-8 was utilized for detecting GC cell viability. GC cell migration and invasion were examined through Transwell assays. Bioinformatics and dual-luciferase reporter gene assays were employed to verify the regulatory relationships between microRNA-582-3p (miR-582-3p) and circ_0000423 or DIXDC1. In the present study, we demonstrated that circ_0000423 was highly expressed in GC. Circ_0000423 knockdown suppressed GC cell viability, migration and invasion. Moreover, miR-582-3p was confirmed as a direct target of circ_0000423, and an upstream regulator of DIXDC1. MiR-582-3p inhibition or DIXDC1 overexpression could reverse the above-mentioned effects of knocking down circ_0000423 on GC cells. In conclusion, circ_0000423 facilitates GC progression by modulating the miR-582-3p/DIXDC1 axis.
Collapse
Affiliation(s)
- Chao-Qun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Ping Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Yin-Ping Wang
- Department of GastroenterologyThe Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Dan-Dan Hao
- Department of GastroenterologyThe Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.,Department of Gastroenterology, Zhengzhou Central Hospital, Zhengzhou, Henan, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| |
Collapse
|
12
|
Ren Z, Yang Q, Guo J, Huang H, Li B, Yang Z, Tian X. Circular RNA hsa_circ_0000073 Enhances Osteosarcoma Cells Malignant Behavior by Sponging miR-1252-5p and Modulating CCNE2 and MDM2. Front Cell Dev Biol 2021; 9:714601. [PMID: 34568326 PMCID: PMC8459753 DOI: 10.3389/fcell.2021.714601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: An increasing number of studies have demonstrated that circular RNAs (circRNAs) are involved in tumor progression. However, the role of hsa_circ_0000073 in osteosarcoma (OS) is still not fully elucidated. Methods: Quantitative reverse transcription-polymerase chain reaction or Western blot was used to detect the gene expression. GeneChip analysis, bioinformatics, luciferase reporter, and RNA immunoprecipitation assays were adopted to predict and verify the relationships between genes. Counting Kit-8 Assay, clone formation assay, wound-healing assay, transwell assays, cell cycle assays, and in vivo tumorigenesis were used to evaluate cell function. Results: hsa_circ_0000073 was highly expressed in OS cell lines and could promote OS progression, including proliferation, migration, invasion, and cell cycle in vitro as well as tumorigenesis in vivo. Mechanically, hsa_circ_0000073 could readily downregulate the expression of CCNE2 and MDM2 through miR-1252-5p. Rescue experiments validated miR-1252-5p mimics, or CCNE2/MDM2 short hairpin RNA could reverse the hsa_circ_0000073 overexpressing-induced impairment of malignant tumor behavior. Conclusion: hsa_circ_0000073 functions as a tumor promoter in OS to increase malignant tumor behavior through sponging miR-1252-5p and regulating CCNE2 and MDM2 expression, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Zhijing Ren
- Medical College of Guizhou University, Guiyang, China.,Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qinqin Yang
- Medical College of Guizhou University, Guiyang, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhen Yang
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaobin Tian
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
14
|
Wang H, Zeng X, Zheng Y, Wang Y, Zhou Y. Exosomal circRNA in Digestive System Tumors: The Main Player or Coadjuvants? Front Oncol 2021; 11:614462. [PMID: 34249673 PMCID: PMC8264426 DOI: 10.3389/fonc.2021.614462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Exosomes are a type of extracellular microvesicles with a diameter of 40–160 nm. Circular RNA (circRNA) is a type of closed circular RNA molecule that is highly conserved in evolution. Exosomal circRNA plays a vital role in the proliferation, invasion, migration, and drug resistance of digestive system tumors. In this study, we used The Cancer Genome Atlas (TCGA) database, UALCAN, Python crawler, miRTargetLink Human, Database for Annotation, Visualization, and Integrated Discovery (DAVID), micBioinformatic online tool, and Cytoscape software (3.7.1). The results showed that circ-RanGAP1 in gastric cancer, circUHRF1 in hepatocellular carcinoma, and circFMN2 in colorectal cancer regulate the malignant behavior of tumors and affect the expression of their host gene through sponging miR-877-3p, miR-449c-5p, and miR-1182, respectively. Twenty exosomal circRNAs regulate 6,570 target genes through sponging 23 miRNAs. Firstly, 270 of those target genes are regulated by two or more miRNAs, which are highly correlated with 83 tumor-related pathways and six Kyoto Encyclopedia of Genes and Genomes pathways. Secondly, 1,146 target genes were significantly differentially expressed in corresponding digestive system tumors, and functional enrichment analysis revealed that 78 of those were involved in 20 cancer-related pathways. In short, the bioinformatics analysis showed that these exosomal circRNAs are stably expressed in body fluids, and regulate the occurrence and development of gastric cancer, hepatocellular carcinoma, colorectal cancer, and other digestive system tumors through sponging miRNAs. Exosomal circRNAs may be used as biomarkers for the diagnosis of disease and identification of effective therapeutic targets in the future, as well as improve the prognosis of patients with digestive system tumors.
Collapse
Affiliation(s)
- Haoying Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xi Zeng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Wang J, Wang Q, Gong Y, Hu Q, Zhang H, Ke S, Chen Y. Knockdown of circRNA circ_0087378 Represses the Tumorigenesis and Progression of Esophageal Squamous Cell Carcinoma Through Modulating the miR-140-3p/E2F3 Axis. Front Oncol 2021; 10:607231. [PMID: 33680929 PMCID: PMC7928419 DOI: 10.3389/fonc.2020.607231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We aimed to investigate the function and underlying mechanisms of circ_0087378 in esophageal squamous cell carcinoma (ESCC). METHODS We verified higher circ_0087378 expression in ESCC tissues by performing qRT-PCR assays. We further confirmed the oncogenic roles of circ_0087378 in ESCC cells through a series of biological function assays. Then, we used an RNA pull-down assay and luciferase reporter assay to identify miR-140-3p that directly interacts with circ_0087378. Subsequent studies were performed to demonstrate that the circ_0087378/miR-140-3p/E2F3 axis promotes ESCC development. RESULTS We demonstrated that upregulated circ_0087378 expression was positively associated with tumor size, histological grade, tumor stage, the presence of metastasis, and worse survival in patients with ESCC. Our results further revealed that knockdown of circ_0087378 suppressed the proliferation, migration, and invasion of ESCC cells and reduced tumor growth in vivo. Mechanistically, we showed that circ_0087378 could directly bind to miR-miR-140-3p and relieve the suppression for target E2F3, which accelerated cell proliferation, migration, and invasion. Correlation analysis in ESCC specimens supported the involvement of the circ_0087378/miR-140-3p/E2F3 axis in ESCC progression. CONCLUSIONS This study demonstrated that circ_0087378 might act as a competing endogenous RNA for miR-140-3p, which could inhibit the tumorigenesis and progression of ESCC through upregulating E2F3 expression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Qiushuang Wang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Yi Gong
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Qiu Hu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Haoliang Zhang
- Department of Oncology, Tangshan Workers' Hospital, Tangshan, China
| | - Shaobo Ke
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Circ-XPR1 promotes osteosarcoma proliferation through regulating the miR-214-5p/DDX5 axis. Hum Cell 2020; 34:122-131. [PMID: 32920730 DOI: 10.1007/s13577-020-00412-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Circular RNAs (circRNAs) are a new class of RNAs that play an important role in the development of various tumors. However, the expression profile and biological function of circRNAs in osteosarcoma (OS) progression remain unclear. OS-related circRNA expression profiles from the GEO database (GSE96964) were downloaded to identify differentially expressed circRNAs between OS and normal tissues. We identified one upregulated circRNA (Circ-XPR1), and RT-PCR was performed to further confirm the expression abundance in OS tissue. Circ-XPR1 was closely related to overall survival and disease-free survival of OS patients. Knockdown of Circ-XPR1 significantly reduced the proliferation of OS cells. Gain- and loss-of-function studies showed that Circ-XPR1 promoted OS cell proliferation by sponging miR-214-5p to regulate DDX5 expression. Our findings suggested that Circ-XPR1 regulates OS cell proliferation by sponging miR-214-5p to regulate DDX5 expression. Therefore, the Circ-XPR1/miR-214-5p/DDX5 axis may serve as a potential therapeutically relevant target for OS.
Collapse
|