1
|
Fang J, Yu T, Jiang X, Lu Y, Shang X, Shen H, Lu Y, Zheng J, Fu P. Prognostic value of EIF5A2 in solid tumors: A meta-analysis and bioinformatics analysis. Open Med (Wars) 2024; 19:20240962. [PMID: 38770178 PMCID: PMC11103163 DOI: 10.1515/med-2024-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Aims In cancer biology, the aberrant overexpression of eukaryotic translation initiation factor 5A2 (EIF5A2) has been correlative with an ominous prognosis, thereby underscoring its pivotal role in fostering metastatic progression. Consequently, EIF5A2 has garnered significant attention as a compelling prognostic biomarker for various malignancies. Our research endeavors were thus aimed at elucidating the utility and significance of EIF5A2 as a robust indicator of cancer outcome prediction. Method An exhaustive search of the PubMed, EMBASE, and Web of Science databases found relevant studies. The link between EIF5A2 and survival prognosis was examined using hazard ratios and 95% confidence intervals. Subsequently, The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) databases were employed to validate EIF5A2 expression across various cancer types. Results Through pooled analysis, we found that increased EIF5A2 expression was significantly associated with decreased overall survival (OS) and disease-free survival/progression-free survival/relapse-free survival (DFS/PFS/RFS). Moreover, TCGA analysis revealed that EIF5A2 was significantly upregulated in 27 types of cancer, with overexpression being linked to shorter OS in three, worse DFS in two, and worse PFS in six types of cancer. GEPIA showed that patients with EIF5A2 overexpression had reduced OS and DFS. Conclusions In solid tumors, EIF5A2 emerges as a reliable prognostic marker. Our meta-analysis comprehensively analyzed the prognostic value of EIF5A2 in solid tumors and assessed its efficacy as a predictive marker.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tianze Yu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, 318000, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Breast and Thyroid Surgery, Cixi People’s Hospital, Cixi, Zhejiang, 315300, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People’s Hospital, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
2
|
Autophagy-Related Chemoprotection against Sorafenib in Human Hepatocarcinoma: Role of FOXO3 Upregulation and Modulation by Regorafenib. Int J Mol Sci 2021; 22:ijms222111770. [PMID: 34769197 PMCID: PMC8583804 DOI: 10.3390/ijms222111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Early acquisition of sorafenib resistance is responsible for the dismal prognosis of advanced hepatocarcinoma (HCC). Autophagy, a catabolic process involved in liver homeostasis, has been associated with chemosensitivity modulation. Forkhead box O3 (FOXO3) is a transcription factor linked to HCC pathogenesis whose role on autophagy-related sorafenib resistance remains controversial. Here, we unraveled the linkage between autophagy and sorafenib resistance in HCC, focusing on the implication of FOXO3 and its potential modulation by regorafenib. We worked with two HepG2-derived sorafenib-resistant HCC in vitro models (HepG2S1 and HepG2S3) and checked HCC patient data from the UALCAN database. Resistant cells displayed an enhanced basal autophagic flux compared to HepG2, showing higher autophagolysosome content and autophagy markers levels. Pharmacological inhibition of autophagy boosted HepG2S1 and HepG2S3 apoptosis and subG1 cells, but reduced viability, indicating the cytoprotective role of autophagy. HCC samples displayed higher FOXO3 levels, being associated with shorter survival and autophagic genes expression. Consistently, chemoresistant in vitro models showed significant FOXO3 upregulation. FOXO3 knockdown suppressed autophagy and caused resistant cell death, demonstrating that overactivation of such pro-survival autophagy during sorafenib resistance is FOXO3-dependent; a cytoprotective mechanism that the second-line drug regorafenib successfully abolished. Therefore, targeting FOXO3-mediated autophagy could significantly improve the clinical efficacy of sorafenib.
Collapse
|
3
|
Bracic Tomazic S, Schatz C, Haybaeck J. Translational Regulation in Hepatocellular Carcinogenesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4359-4369. [PMID: 34703211 PMCID: PMC8523516 DOI: 10.2147/dddt.s255582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The mortality of hepatocellular carcinoma (HCC) is distributed unevenly worldwide. One of the major causes is hepatitis B or hepatitis C virus infection and the development and progression of liver cirrhosis. The carcinogenesis of HCC is among others regulated via the mTOR (mechanistic target of rapamycin) signaling pathway and represents a possible method of targeted treatment. The aim of our article was to address the most recent clinical advances and findings of basic studies on the mTOR signaling pathway and the involved factors. Risk factors play a key role in dysregulation of the signaling pathway, where both mTORCs are upregulated and protein synthesis is altered. eIFs and, to a lesser extent, eEFs play an essential role in this process. Whether the factor will be upregulated or downregulated, among others, depends on hepatitis B/C virus infection. The amount of a particular factor in a patient sample lets us know whether HCC recurrence will occur, what is the likelihood of chemoresistance, and what outcome is predicted for patients with an increased value. Our analysis shows that in addition to mTOR, eIF3, eIF4, and eIF5 play an important role, as they can serve as biomarkers for non- and virus-related HCC.
Collapse
Affiliation(s)
- Suzana Bracic Tomazic
- Department of Pathology, Hospital Graz II, Graz, 8020, Austria.,Faculty of Medicine, University of Maribor, Maribor, 2000, Slovenia
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, 6020, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Graz, 8010, Austria
| |
Collapse
|