1
|
Cheng Q, Chen G, Wu X, Fang H, Shi J, Zhong B. Detection of serum SNHG22 and its correlation with prognosis of non-small cell lung cancer. J Cardiothorac Surg 2024; 19:536. [PMID: 39300525 PMCID: PMC11414149 DOI: 10.1186/s13019-024-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Lung cancer accounts for a significant proportion of cancer-related deaths in China, with the majority of the cases being classified as non-small cell lung cancer (NSCLC). The study aimed to investigate the expression of serum SNHG22 in patients with NSCLC, and its molecular mechanism and prognostic potential in NSCLC. METHODS Admitted 125 NSCLC patients were selected for the study, along with 125 healthy individuals in the same period. The levels of SNHG22 and miR-128-3p were quantified via RT-qPCR. Correlations between the SNHG22 level and the pathological characteristics of the NSCLC patients were investigated through the application of the chi-square test. The targeting relationship between SNHG22 and miR-128-3p was predicted by online database and confirmed by luciferase activity. The prognostic ability of SNHG22 in NSCLC was assessed by Kaplan-Meier curves and multivariate Cox analysis. RESULTS SNHG22 was upregulated in NSCLC and directly targeted miR-128-3p. The rate of overall survival is lower in patients with high-SNHG22 group compared to those with low-SNHG22 group. Silencing SNHG22 impaired the functionality of cells, which was restored by miR-128-3p inhibitor. SNHG22 stands as an independent predictor of poor prognosis in NSCLC patients. CONCLUSION The overexpression of SNHG22 in NSCLC is related to lymph node metastasis, TNM stage and patient survival, which is expected to be a prognostic predictor of NSCLC patients.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guoping Chen
- Department of Respiratory and Critical Care Medicine, Binhai County People's Hospital, Yancheng, 224500, China
| | - Xiaojiao Wu
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China.
| | - Hang Fang
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Jingjing Shi
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Bonian Zhong
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, No.1, Guangming East Road, Guangzhou, 511300, China.
| |
Collapse
|
2
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
3
|
Yi J, Ma X, Ying Y, Liu Z, Tang Y, Shu X, Sun J, Wu Y, Lu D, Wang X, Luo J, Liu B, Zheng X, Lin Y, Li J, Xie L. N6-methyladenosine-modified CircPSMA7 enhances bladder cancer malignancy through the miR-128-3p/MAPK1 axis. Cancer Lett 2024; 585:216613. [PMID: 38211649 DOI: 10.1016/j.canlet.2024.216613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Several studies have indicated that circular RNAs (circRNAs) play vital roles in the progression of various diseases, including bladder cancer (BCa). However, the underlying mechanisms by which circRNAs drive BCa malignancy remain unclear. In this study, we identified a novel circRNA, circPSMA7 (circbaseID:has_circ_0003456), showing increased expression in BCa cell lines and tissues, by integrating the reported information with circRNA-seq and qRT-PCR. We revealed that circPSMA7 is associated with a higher tumor grade and stage in BCa. M6A modification was identified in circPSMA7, and IGF2BP3 recognized this modification and stabilized circPSMA7, subsequently increasing the circPSMA7 expression. In vitro and in vivo experiments showed that circPSMA7 promoted BCa proliferation and metastasis by regulating the cell cycle and EMT processes. CircPSMA7 acted as a sponge for miR-128-3p, which showed antitumor effects in BCa cell lines, increasing the expression of MAPK1. The tumor proliferation and metastasis suppression induced by silencing circPSMA7 could be partly reversed by miR-128-3p inhibition. Thus, the METTL3/IGF2BP3/circPSMA7/miR-128-3p/MAPK1 axis plays a critical role in BCa progression. Furthermore, circPSMA7 may be a potential diagnostic biomarker and novel therapeutic target for patients with BCa.
Collapse
Affiliation(s)
- Jiahe Yi
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Zixiang Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yijie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xuan Shu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jiazhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yuqing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Dingheng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jindan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yiwei Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, 310058 China.
| |
Collapse
|
4
|
Wu J, Wang C, Cui X, Liu L, Wang L, Wang J, Xue X, Dang T. MicroRNA-128 acts as a suppressor in the progression of gastrointestinal stromal tumor by targeting B-lymphoma Mo-MLV insertion region 1. Clin Transl Oncol 2024; 26:363-374. [PMID: 38103120 DOI: 10.1007/s12094-023-03354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The critical role of microRNA-128 (miR-128) in gastrointestinal-related diseases has been documented. In the current study, we tried to clarify the specific role miR-128 in gastrointestinal stromal tumor (GIST) and the underlying mechanism. METHODS Differentially expressed genes in GIST were identified following bioinformatics analysis. Then, expression patterns of miR-128 and B-lymphoma Mo-MLV insertion region 1 (BMI-1) in clinical tissue samples and cell lines were characterized, followed by validation of their correlation. GIST-T1 cells were selected and transfected with different mimic, inhibitor, or siRNA plasmids, after which the biological functions were assayed. RESULTS We identified low miR-128 and high BMI-1 expression in GIST tissues of 78 patients and 4 GIST cell lines. Ectopic expression of miR-128 or silencing of BMI-1 suppressed the malignant potentials of GIST-T1 cells. As a target of miR-128, BMI-1 re-expression could partly counteract the suppressive effect of miR-128 on the malignancy of GIST-T1 cells. CONCLUSION Our study provided evidence that miR-128-mediated silencing of BMI-1 could prevent malignant progression of GIST, highlighting a promising anti-tumor target for combating GIST.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Changjuan Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Xia Cui
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Lin Liu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Lu Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China.
| |
Collapse
|
5
|
Huldani H, Gandla K, Asiri M, Romero-Parra RM, Alsalamy A, Hjazi A, Najm MAA, Fawaz A, Hussien BM, Singh R. A comprehensive insight into the role of small nucleolar RNAs (snoRNAs) and SNHGs in human cancers. Pathol Res Pract 2023; 249:154679. [PMID: 37567032 DOI: 10.1016/j.prp.2023.154679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Long non-coding RNAs (lncRNAs), which comprise most non-coding RNAs (ncRNAs), have recently become a focus of cancer research. How many functional ncRNAs exist is still a matter of debate. Although insufficient evidence supports that most lncRNAs function as transcriptional by-products, it is widely known that an increasing number of lncRNAs play essential roles in cells. Small nucleolar RNAs (snoRNAs), 60-300 nucleotides in length, have been better studied than long non-coding RNAs (lncRNAs) and are predominantly present in the nucleolus. Most snoRNAs are encoded in introns of protein- and non-protein-coding genes called small nucleolar RNA host genes (SNHGs). In this article, we explore the biology and characteristics of SNHGs and their role in developing human malignancies. In addition, we provide an update on the ability of these snoRNAs to serve as prognostic and diagnostic variables in various forms of cancer.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ali Alsalamy
- College of Medical Technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Albab Fawaz
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
6
|
Li M, Liu T, Cheng W, Jin H, Wang X. A test of miR-128-3p and miR-33a-5p in serum exosome as biomarkers for auxiliary diagnosis of non-small cell lung cancer. J Thorac Dis 2023; 15:2616-2626. [PMID: 37324093 PMCID: PMC10267929 DOI: 10.21037/jtd-23-398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Background Lung cancer is the malignant tumor with the highest incidence and mortality rate in the world today, and non-small cell lung cancer (NSCLC) is its most common type. However, there is still a paucity of specific tumor markers for lung cancer screening. Herein, we detected and compared the levels of miR-128-3p and miR-33a-5p in serum exosomes of NSCLC patients and healthy volunteers, with the aim of identifying suitable exosomal microRNAs (miRNAs) as tumor biomarkers, and explored their value in the auxiliary diagnosis of NSCLC. Methods All participants were recruited from September 1, 2022 to December 30, 2022, and met the inclusion criteria. The case group included 20 patients with lung nodules who were highly suspected of having lung cancer (two cases were excluded). A total of 18 healthy volunteers (control group) were also enrolled. Blood samples were collected in both the case group before surgery and in the control group. Quantitative real-time polymerase chain reaction method was used to detect the expression of miR-128-3p and miR-33a-5p in serum exosomes. The main indicators of statistical analysis included the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results Compared with the healthy control group, the NSCLC case group had significantly lower expression levels of serum exosome miR-128-3p and miR-33a-5p (P<0.01, P<0.001), and there was a significant positive correlation between the two exosome miRNAs (r=0.848, P<0.01). The AUC values of miR-128-3p alone and miR-33a-5p alone in distinguishing case group and control group were 0.789 [95% confidence interval (CI): 0.637-0.940; sensitivity: 61.1%; specificity: 94.4%; P=0.003] and 0.821 (95% CI: 0.668-0.974; sensitivity: 77.8%; specificity: 83.3%; and P=0.001), respectively. The combination of miR-128-3p and miR-33a-5p had an AUC of 0.855 (95% CI: 0.719-0.991; P<0.001) for distinguishing case group and control group, which was greater than the AUC values of miR-128-3p alone and miR-33a-5p alone (cut-off value: 0.034; sensitivity: 83.3%; and specificity: 88.9%). However, there was no significant difference in the AUC among these three groups (P>0.05). Conclusions Serum exosome miR-128-3p and miR-33a-5p showed good performance in NSCLC screening and may be used as new biomarkers for large-scale NSCLC screening.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tao Liu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wen Cheng
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hai Jin
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaowei Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Yang W, Yang X, Zhang Y, Li Y, Lv W. MiR-363 restrain the proliferation, migration and invasion of colorectal carcinoma cell by targeting E2F3. J Cancer 2023; 14:1362-1370. [PMID: 37283793 PMCID: PMC10240674 DOI: 10.7150/jca.83897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
MicroRNA (miRNA) is associated with tumor cell proliferation, migration and invasion. Studies have shown that miRNAs are closely related to the occurrence and development of colorectal cancer (CRC), but the mechanisms deserve further investigation. In this study, we aim to explore the role of miR-363 on CRC tumorigenesis. Using CRC cell lines, we tested the expression of miR-363 by using RT-PCR, and miR-363 effect on cell behavior was test by using CCK-8 assay, wound-healing assay and cell invasion assay, and western blotting. Luciferase reporter assay and western blot confirmed that E2F3 was the target gene for miR-363. We further examined the effect of E2F3 on the regulation of miR-363 on cell behavior through knockdown of E2F3. Western blot and RT-PCR assay showed that miR-363 inhibited the expression of E2F3 in HCT-116 and SW480 cell. MiR-363 overexpression or E2F3 knockdown inhibited cell proliferation, migration and invasion of CRC. This study demonstrated that miR-363 is able to suppress cell proliferation, migration and invasion by negative regulating E2F3 in CRC cells, and inhibits tumor growth in vivo.
Collapse
Affiliation(s)
| | | | | | - Yunhai Li
- ✉ Corresponding author: Dr. Yunhai Li, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China. ; Dr. Wenliang Lv, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China.
| | - Wenliang Lv
- ✉ Corresponding author: Dr. Yunhai Li, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China. ; Dr. Wenliang Lv, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China.
| |
Collapse
|
8
|
Li Z, Lang Z, Wang T, Qu G, Sui W, Liu J. LncRNA SNHG22 promotes gastric cancer progression by regulating the miR-101-3p/e2f2 axis. Cell Cycle 2023; 22:347-360. [PMID: 36281526 PMCID: PMC9851253 DOI: 10.1080/15384101.2022.2119515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/04/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023] Open
Abstract
Gastric cancer (GC) still poses a significant threat to human life. Hence, there is an urgent need to understand the mechanism of GC progression and develop novel therapeutics approach to treating GC. This study was conducted to evaluate the role of the lncRNA SNHG22 in the progression of GC. First, GC data from TCGA were analyzed using GEPIA. After the starbase database was used to predict SNHG22 target miRNA and miR-101-3p target mRNA. The predictions were validated using a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR. The relative expression of SNHG22, miR-101-3p, and E2F2 was measured by qRT-PCR and western blot (WB) analysis, while the mechanism of GC cell proliferation was elucidated through the colony formation and CCK-8 assay. Our result showed that SNHG22 was upregulated significantly in GC tissue samples from TCGA database, GC cell lines, and clinical tissue samples, and its expression was related to low survival rate of gastric cancer patients. Bioinformatics prediction predicted miR-101-3p as the potential target of SNHG22 and E2F2 genes as miR-101-3p target mRNA. We found that E2F2 expression was negatively associated with overall survival of GC patients. Functional study showed that silencing SNHG22 markedly inhibited the proliferation, migration, and invasion of GC cells as well as in vivo tumor growth. This was reversed after inhibiting miR-101-3p or overexpressing E2F2. The lncRNA SNHG22 promotes the proliferation, migration, and invasion of GC cells via the miR-101-3p/E2F2 axis. SNHG22 might be a potential prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of General & Pediatric surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Zhiqiang Lang
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Guimei Qu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Wu Sui
- Department of General & Pediatric surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Jing Liu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| |
Collapse
|
9
|
Luo P, Du J, Li Y, Ma J, Shi W. Association between small nucleolar RNA host gene expression and survival outcome of colorectal cancer patients: A meta-analysis based on PRISMA and bioinformatics analysis. Front Oncol 2023; 13:1094131. [PMID: 36895488 PMCID: PMC9990627 DOI: 10.3389/fonc.2023.1094131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Growing evidence shows that long non-coding RNA small nucleolar RNA host genes (lncRNA SNHGs) enact an pivotal regulatory roles in the shorter survival outcome of colorectal cancer (CRC). However, no research has systematically evaluated the correlation among lncRNA SNHGs expression and survival outcome of CRC. This research indented to screen whether exist potential prognostic effect of lncRNA SNHGs in CRC patientss using comprehensive review and meta-analysis. Methods Systematic searches were performed from the six relevant databases from inception to October 20, 2022. The quality of published papers was evaluated in details. We pooled the hazard ratios (HR) with 95% confidence interval (CI) through direct or indirect collection of effect sizes, and odds ratios (OR) with 95% CI by collecting effect sizes within articles. Detailed downstream signaling pathways of lncRNA SNHGs were summarized in detail. Results 25 eligible publications including 2,342 patients were finally included to appraise the association of lncRNA SNHGs with prognosis of CRC. Elevated lncRNA SNHGs expression was revealed in colorectal tumor tissues. High lncSNHG expression means bad survival prognosis in CRC patients (HR=1.635, 95% CI: 1.405-1.864, P<0.001). Additionally, high lncRNA SNHGs expression was inclined to later TNM stage (OR=1.635, 95% CI: 1.405-1.864, P<0.001), distant lymph node invasion, distant organ metastasis, larger tumor diameter and poor pathological grade. Begg's funnel plot test using the Stata 12.0 software suggested that no significant heterogeneity was found. Conclusion Elevated lncRNA SNHGs expression was revealed to be positively correlated to discontented CRC clinical outcome and lncRNA SNHG may act as a potential clinical prognostic index for CRC patients.
Collapse
Affiliation(s)
- Pei Luo
- Department of Gastroenterology, Qian Xi Nan Buyi and Miao Autonomous Prefecture People's Hospital, Xingyi, Guizhou, China
| | - Jie Du
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinan Li
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jilong Ma
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjun Shi
- Colorectal Surgery Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Snyder M, Iraola-Guzmán S, Saus E, Gabaldón T. Discovery and Validation of Clinically Relevant Long Non-Coding RNAs in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14163866. [PMID: 36010859 PMCID: PMC9405614 DOI: 10.3390/cancers14163866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recent efforts in biomedical research have focused on the identification of molecular biomarkers to improve the diagnosis, prognosis and eventually treatment of the most common human diseases worldwide, including cancer. In this context, a large number of studies point to a pivotal role of long non-coding RNAs (lncRNAs) in the pathophysiology of carcinogenesis, suggesting diagnostic or therapeutic potential. However, for most of them, supporting evidence is scarce and often based on a single large-scale analysis. Here, focusing on colorectal cancer (CRC), we present an overview of the main approaches for discovering and validating lncRNA candidate molecules, and provide a curated list of the most promising lncRNAs associated with this malignancy. Abstract Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with nearly two million newly diagnosed cases each year. The survival of patients with CRC greatly depends on the cancer stage at the time of diagnosis, with worse prognosis for more advanced cases. Consequently, considerable effort has been directed towards improving population screening programs for early diagnosis and identifying prognostic markers that can better inform treatment strategies. In recent years, long non-coding RNAs (lncRNAs) have been recognized as promising molecules, with diagnostic and prognostic potential in many cancers, including CRC. Although large-scale genome and transcriptome sequencing surveys have identified many lncRNAs that are altered in CRC, most of their roles in disease onset and progression remain poorly understood. Here, we critically review the variety of detection methods and types of supporting evidence for the involvement of lncRNAs in CRC. In addition, we provide a reference catalog that features the most clinically relevant lncRNAs in CRC. These lncRNAs were selected based on recent studies sorted by stringent criteria for both supporting experimental evidence and reproducibility.
Collapse
Affiliation(s)
- Madison Snyder
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Susana Iraola-Guzmán
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Zeng Y, Zhang X, Li F, Wang Y, Wei M. AFF3 is a novel prognostic biomarker and a potential target for immunotherapy in gastric cancer. J Clin Lab Anal 2022; 36:e24437. [PMID: 35478418 PMCID: PMC9169183 DOI: 10.1002/jcla.24437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers worldwide with a poor prognosis. The tumor microenvironment (TME) serves a pivotal role in affecting the prognosis and efficacy of immunotherapy. Given the poor prognosis of GC patients and the limitation of immunotherapy, we urged to identify new prognostic and immunotherapeutic biomarkers. Methods The transcriptome data were downloaded from the TCGA, GEO, and GEPIA databases, and performed differential analysis of AFF3 in tumor samples and normal samples. The UALCAN, Kaplan–Meier plotter and GEPIA databases were employed to assess the correlation of AFF3 with clinicopathological characteristics and prognosis. The potential mechanism of AFF3 was explored by the GO and KEGG enrichment. The potential role of AFF3 on tumor‐infiltrating immune cells (TIICs) was explored by TIMER2.0 and TISIDB. TIMER2.0 and SangerBox3.0 databases were, respectively, used to determine the correlation of AFF3 with immune checkpoint (ICs), tumor mutational burden (TMB), and microsatellite instability (MSI) in GC. Results We found significant downregulation of AFF3 in GC tissues as compared with normal tissues. However, GC patients having a higher expression of AFF3 were found to have worse clinicopathological characteristics and prognosis. Moreover, the GO enrichment analysis illustrated that AFF3 might regulate the immune cells in the TME. In addition, the AFF3 was positively correlated with TIICs, ICs, TMB, and MSI. Conclusion Here, we conclude that AFF3 may be a promising potential marker for the diagnosis and prognosis of GC patients, and may influence response to ICIs by affecting TIICs and ICs expression in the TME.
Collapse
Affiliation(s)
- Yuling Zeng
- Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Xueping Zhang
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated of Zhengzhou University, Zhengzhou City, China
| | - Fazhan Li
- Marshall Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Ying Wang
- Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Ming Wei
- Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
12
|
Song W, Ren J, Xiang R, Yuan W, Fu T. Cross-Talk Between m 6A- and m 5C-Related lncRNAs to Construct a Novel Signature and Predict the Immune Landscape of Colorectal Cancer Patients. Front Immunol 2022; 13:740960. [PMID: 35350786 PMCID: PMC8957790 DOI: 10.3389/fimmu.2022.740960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background N6-methyladenosine (m6A) and 5-methylcytosine (m5C) can modify long non-coding RNAs (lncRNAs), thereby affecting tumorigenesis and tumor progression. However, there is a lack of knowledge regarding the potential roles and cross-talk of m6A- and m5C-related lncRNAs in the tumor microenvironment (TME) and their effect on prognosis. Methods We systematically evaluated the expression patterns of m6A- and m5C-related lncRNAs in 1358 colorectal cancer (CRC) samples from four datasets. Consensus clustering was conducted to identify molecular subtypes of CRC, and the clinical significance, TME, tumor-infiltrating immune cells (TIICs), and immune checkpoints in the different molecular subtypes were analyzed. Finally, we established a m6A- and m5C-related lncRNA signature and a prognostic nomogram. Results We identified 141 m6A- and m5C-related lncRNAs by co-expression analysis, among which 23 lncRNAs were significantly associated with the overall survival (OS) of CRC patients. Two distinct molecular subtypes (cluster A and cluster B) were identified, and these two distinct molecular subtypes could predict clinicopathological features, prognosis, TME stromal activity, TIICs, immune checkpoints. Next, a m6A- and m5C-related lncRNA signature for predicting OS was constructed, and its predictive capability in CRC patients was validated. We then constructed a highly accurate nomogram for improving the clinical applicability of the signature. Analyses of clinicopathological features, prognosis, TIICs, cancer stem cell (CSC), and drug response revealed significant differences between two risk groups. In addition, we found that patients with a low-risk score exhibited enhanced response to anti-PD-1/L1 immunotherapy. Functional enrichment analysis showed that these lncRNAs related to the high-risk group were involved in the development and progression of CRC. Conclusions We conducted a comprehensive analysis of m6A- and m5C-related lncRNAs in CRC and revealed their potential functions in predicting tumor-immune-stromal microenvironment, clinicopathological features, and prognosis, and determined their role in immunotherapy. These findings may improve our understanding of the cross-talk between m6A- and m5C-related lncRNAs in CRC and pave a new road for prognosis assessment and more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rensheng Xiang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
14
|
Liu S, Peng X, Wu X, Bu F, Yu Z, Zhu J, Luo C, Zhang W, Liu J, Huang J. Construction of a new immune-related lncRNA model and prediction of treatment and survival prognosis of human colon cancer. World J Surg Oncol 2022; 20:71. [PMID: 35249533 PMCID: PMC8900415 DOI: 10.1186/s12957-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background An increasing number of studies have shown that immune-related long noncoding RNAs (lncRNAs) do not require a unique expression level. This finding may help predict the survival and drug sensitivity of patients with colon cancer. Methods We retrieved original transcriptome and clinical data from The Cancer Genome Atlas (TCGA), sorted the data, differentiated mRNAs and lncRNAs, and then downloaded immune-related genes. Coexpression analysis predicted immune-related lncRNAs (irlncRNAs) and univariate analysis identified differentially expressed irlncRNAs (DEirlncRNAs). We have also amended the lasso pending region. Next, we compared the areas under the curve (AUCs), counted the Akaike information standard (AIC) value of the 3-year receiver operating characteristic (ROC) curve, and determined the cutoff point to establish the best model to differentiate the high or low disease risk group of colon cancer patients. Results We reevaluated the patients regarding the survival rate, clinicopathological features, tumor-infiltrating immune cells, immunosuppressive biomarkers, and chemosensitivity. A total of 155 irlncRNA pairs were confirmed, 31 of which were involved in the Cox regression model. After the colon cancer patients were regrouped according to the cutoff point, we could better distinguish the patients based on adverse survival outcomes, invasive clinicopathological features, the specific tumor immune cell infiltration status, high expression of immunosuppressive biomarkers, and low chemosensitivity. Conclusions In this study, we established a characteristic model by pairing irlncRNAs to better predict the survival rate, chemotherapy efficacy, and prognostic value of patients with colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02508-2.
Collapse
|
15
|
Huang Z, Wang C, Zhao X. circFIG 4 drives the carcinogenesis and metastasis of esophagus cancer via the miR-493-5p/E2F3 axis. Thorac Cancer 2022; 13:783-794. [PMID: 35083866 PMCID: PMC8930455 DOI: 10.1111/1759-7714.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Background Esophageal cancer (EC) is a highly malignant tumor of the digestive tract. Circular RNAs (circRNAs) have been verified to play a regulatory role in the occurrence and progression of different cancers, including EC. This research aimed to investigate the role and molecular mechanism of circFIG 4 in EC progression. Methods The analyses of circFIG 4, miR‐493‐5p, and neuro‐oncological ventral antigen 2 levels were administrated by quantitative real‐time polymerase chain reaction. The characteristics of circFIG 4 were determined by Ribonuclease R assay and Actinomycin D assay. Cell proliferation was assessed via colony formation assay and 5‐ethynyl‐2′‐deoxyuridine incorporation assay. Cell cycle distribution and apoptosis were evaluated by flow cytometry. Western blot was performed to assess protein expression. The targeted interaction among circFIG 4, miR‐493‐5p, and E2F transcription factor 3 (E2F3) were validated using dual‐luciferase reporter or RNA immunoprecipitation assays. Results circFIG 4 was overtly upregulated in EC and was relatively stable in EC cells. circFIG 4 knockdown impeded proliferation, migration, and invasion and expedited apoptosis in EC cells. circFIG 4 served as a miR‐493‐5p sponge to act in the development of EC. Furthermore, circFIG 4 modulated EC progression via targeting miR‐493‐5p and miR‐493‐5p suppressed EC progression via targeting E2F3. circFIG 4 modulated E2F3 expression through acting as a sponge of miR‐493‐5p. Moreover, circFIG 4 knockdown inhibited EC tumorigenesis by targeting miR‐493‐5p/E2F3 axis tumor growth in vivo. Conclusion circFIG 4 silence mitigated EC malignant progression at least partly by mediating the miR‐493‐5p/E2F3 pathway, highlighting new biomarkers and therapeutic targets for EC treatment.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Thoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Chunyue Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Xin Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, China
| |
Collapse
|
16
|
Lu X, Chen L, Li Y, Huang R, Meng X, Sun F. Long non-coding RNA LINC01207 promotes cell proliferation and migration but suppresses apoptosis and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate dehydrogenase isoform A axis. Bioengineered 2021; 12:7780-7793. [PMID: 34463208 PMCID: PMC8806684 DOI: 10.1080/21655979.2021.1972784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to participate in the progression of various cancers, including oral squamous cell carcinoma (OSCC). This study aims to find out whether lncRNA LINC01207 regulates the progression of OSCC. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to evaluate gene expression in OSCC cells and tissues. Cell viability, proliferation, migration, apoptosis, and autophagy were detected using Cell Counting Kit-8 (CCK-8), colony formation, Transwell assays, flow cytometry, and western blot analysis. Luciferase reporter and RNA immunoprecipitation (RIP) assays were conducted to assess the interactions among genes. We found that LINC01207 was overexpressed in OSCC cells and tissues. LINC01207 silencing inhibited OSCC cell proliferation and migration but promoted apoptosis and autophagy, and LINC01207 overexpression had an opposite result. LINC01207 interacted with microRNA-1301-3p (miR-1301-3p) while lactate dehydrogenase isoform A (LHDA) was targeted by miR1301-3p. Effects caused by LINC01207 downregulation on OSCC cells were reversed by overexpression of LDHA. Overall, LINC01207 promotes OSCC progression via the miR-1301-3p/LDHA axis
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Maxillofacial Surgery, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Liling Chen
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China.,Department of Prosthodontics, Pudong New District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yang Li
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Rong Huang
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Xiangfeng Meng
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Fangfang Sun
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| |
Collapse
|