1
|
Marcolin JC, Lichtenfels M, da Silva CA, de Farias CB. Gynecologic and Breast Cancers: What's New in Chemoresistance and Chemosensitivity Tests? Curr Probl Cancer 2023; 47:100996. [PMID: 37467541 DOI: 10.1016/j.currproblcancer.2023.100996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Gynecological and breast cancers affect women's health worldwide. Although chemotherapy is one of the principal treatments for cancer, it also has limitations owing to toxicity and tumor resistance to the drugs used. Thus, individualized treatment based on personal tumor characteristics is essential for improving therapeutic outcomes and patient survival. Chemoresistance and chemosensitivity tests can be useful for predicting tumor response and guiding chemotherapy choices. This methodology has already been applied to breast, ovarian, cervical, and endometrial cancers, identifying successfully which drugs cause resistance and sensitivity responses for each individual person, influencing their progression-free survival and overall response. In addition, more recent techniques, such as organoids and patient-derived xenografts, can also recapitulate patients' tumor characteristics and contribute to chemo response evaluation. Therefore, this review compiles information on chemoresistance and chemosensitivity tests performed in gynecologic and breast cancers and their main results for women's health improvement.
Collapse
Affiliation(s)
- Júlia Caroline Marcolin
- Ziel Biosciences, Department of Translational Research, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Martina Lichtenfels
- Ziel Biosciences, Department of Translational Research, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Alves da Silva
- Ziel Biosciences, Department of Translational Research, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
2
|
He Z, Chen D, Wu J, Sui C, Deng X, Zhang P, Chen Z, Liu D, Yu J, Shi J, Li G, Yao X. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages. Arch Biochem Biophys 2021; 702:108838. [PMID: 33727040 DOI: 10.1016/j.abb.2021.108838] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The antimetabolite 5-fluorouracil (5-FU) is a widely used chemotherapy regimen for the treatment of gastric cancer (GC). However, resistance to 5-FU remains a major drawback in the clinical use. The treatments of anti-tumor chemo-agents recruit tumor associated macrophages (TAMs) which are highly implicated in the chemoresistance development, but the underlying molecular mechanism is unclear. Here, we demonstrate that YAP1 is overexpressed in resistant GC tissues compared to sensitive GC tissues. Further, IL-3 secreted by YAP1-overexpressed GC could skew macrophage polarization to M2-like phenotype and inducing GLUT3-depended glycolysis program. Meanwhile, polarized M2 macrophages enhance 5-FU resistance in tumor cells by secreting CCL8 and activating phosphorylation of JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhanke He
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Da Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China; Department of General Surgery, Zhuhai People's Hospital, Guangzhou, Guangdong, China
| | - Jiani Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuyang Sui
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangqian Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Penghao Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zechang Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Diankun Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xingxing Yao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Kii T, Sakuma K, Tanaka A. Optimal Contact Concentration of Paclitaxel in the Collagen Gel Droplet-Embedded Culture Drug Sensitivity Test for Human Oral Squamous Cell Carcinoma and Evaluation of Combination with Cetuximab. Chemotherapy 2021; 65:147-157. [PMID: 33561855 DOI: 10.1159/000512542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE A combination of the taxane anticancer drug paclitaxel (PTX) and molecular target drug cetuximab (cMab) is effective for the treatment of head and neck squamous cell carcinoma (HNSCC). However, its use is associated with serious side effects, such as neuropathy and myelosuppression. In addition, it is administered regardless of patient sensitivity because biomarkers indicating its efficacy are unavailable. Therefore, we investigated the usefulness of setting the indicated contact concentration of PTX and predicted the antitumor effect of combined contact with cMab using the collagen gel droplet-embedded culture drug sensitivity test (CD-DST). METHOD Twelve human oral squamous cell carcinoma (OSCC) cell lines (i.e., SAS, HSC-2, HSC-3, HSC-4, OSC-19, OSC-20, KON, HO-1-N-1, HO-1-u-1, SAT, SCC-4, and Nialym) were used. Using the CD-DST, we calculated the optimal contact concentration of the cells with PTX based on the clinical response rate of HNSCC and evaluated the combined contact with cMab. Furthermore, nude mice were treated with standalone PTX and PTX + cMab, and the results were compared with those of the CD-DST. RESULTS Based on the CD-DST, 0.1 μg/mL was the optimal contact concentration of PTX, to which the cells showed dose-dependent sensitivity. Moreover, the CD-DST method was used to evaluate the antitumor effects on OSCC even when PTX was used in combination with cMab. The antitumor effects in the CD-DST and nude mice were correlated (p < 0.05). CONCLUSION The CD-DST results suggested that it was possible to predict the clinical effects of single-contact PTX and the enhancing effect of cMab + PTX.
Collapse
Affiliation(s)
- Tomoyuki Kii
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kaname Sakuma
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan,
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| |
Collapse
|
4
|
Collagen gel droplet-embedded culture drug sensitivity test for adjuvant chemotherapy after complete resection of non-small-cell lung cancer. Surg Today 2017; 48:380-387. [PMID: 28993901 DOI: 10.1007/s00595-017-1594-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE We conducted a prospective clinical study to individualize adjuvant chemotherapy after complete resection of non-small-cell lung cancer (NSCLC), based on the drug sensitivity test. METHODS Patients with resectable c-stage IB-IIIA NSCLC were registered between 2005 and 2010. We performed the collagen gel droplet-embedded culture drug sensitivity test (CD-DST) on a fresh surgical specimen to assess in vitro chemosensitivity and evaluated the prognostic outcome after adjuvant chemotherapy with carboplatin/paclitaxel based on the CD-DST. RESULTS Among 92 registered patients, 87 were eligible for inclusion in the analysis. The success rate of CD-DST was 86% and chemosensitivity to carboplatin and/or paclitaxel was evident in 57 (76%) of the 75 patients. Adjuvant chemotherapy was completed in 22 (73%) of 30 patients. The 5-year overall survival rates were 71, 73, and 75% for all, CD-DST success, and chemosensitive patients, respectively. The 5-year disease-free survival and overall survival rates of the chemosensitive patients who completed adjuvant chemotherapy using carboplatin/paclitaxel were 68 and 82%, respectively. The 5-year disease-free survival and overall survival rates of the patients with stage II-IIIA chemosensitive NSCLC were 58 and 75%, respectively. Comparative analyses of the chemosensitive and non-chemosensitive/CD-DST failure groups showed no significant survival difference. CONCLUSIONS CD-DST can be used to evaluate chemosensitivity after lung cancer surgery; however, its clinical efficacy for assessing individualized treatment remains uncertain.
Collapse
|
5
|
Abstract
There are few treatment options for patients with unresectable or refractory hepatoblastoma which has failed to respond to the standard treatment. The rarity of the disease and lack of experimental materials have hampered the development of new treatments. In this study, the collagen gel droplet-embedded culture drug sensitivity test was used to evaluate the effectiveness of the multikinase inhibitors sorafenib and sunitinib, and other drugs, in relapsed hepatoblastoma tumor tissues. Tumor samples from 6 patients with relapsed hepatoblastoma were tested for drug sensitivity by the collagen gel droplet-embedded culture drug sensitivity test; evaluable results were obtained from 5 of them. All samples were judged to be sensitive to sorafenib with a 50% growth inhibitory concentration (IC50) of 0.5 to 3.1 μg/mL. Sunitinib did not achieve IC50 in 2 of 3 samples within the tested concentration range based on clinically observed serum concentrations. In the drug combination assay using a hepatoblastoma cell line, sorafenib showed synergistic effects with SN-38, an active metabolite of irinotecan. Our results provide the basic science background warranting future clinical trials of a combination of sorafenib and irinotecan for relapsed or refractory hepatoblastoma.
Collapse
|
6
|
Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, Gu J, Fu L. High Expression of Pyruvate Kinase M2 is Associated with Chemosensitivity to Epirubicin and 5-Fluorouracil in Breast Cancer. J Cancer 2015; 6:1130-9. [PMID: 26516361 PMCID: PMC4615349 DOI: 10.7150/jca.12719] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pyruvate kinase M2 (PKM2) is the key enzyme in the Warburg effect, and it was recently reported to be involved in the metabolic pathways of chemotherapeutic drugs. However, the role of PKM2 in breast cancer and its influence in the sensitivity to front-line anticancer drugs remains unclear. METHODS In this study, we examined the correlation between the expression of PKM2 and the sensitivity of primary breast cancer cells to anticancer drugs. PKM2 expression was studied by immunohistochemistry using biopsy samples of 296 patients diagnosed with invasive breast carcinoma, and the collagen gel droplet embedded culture-drug sensitivity tests (CD-DST) was conducted to all the patients to detect in vitro chemosensitivity after surgery. RESULTS We found high PKM2 expression was significantly associated with in vitro chemosensitivity to epirubicin (EPI) (P=0.019) and 5-fluorouracil (5-Fu) (P=0.009) in breast cancer patients. Then we used a small group of neoadjuvant chemotherapy cases to confirm that the higher PKM2 expression, the better pathological response to therapy was obtained in patients treated with EPI-based or EPI plus 5-Fu chemotherapy regimens. Although univariate and multivariate analysis indicated that high PKM2 was a poor independent predictor of progression free survival (PFS) and overall survival (OS) in breast cancer, patients with PKM2 high expression who received EPI-based or EPI plus 5-Fu chemotherapy were found to have a longer PFS (P=0.003, P=0.013) and OS (P=0.003, P=0.004) than patients treated with non-EPI/5-Fu-based regimens, respectively. CONCLUSIONS Our findings confirmed the poor prognosis of high PKM2 expression in breast cancer patients and revealed the predictive value of high PKM2 in the therapeutic response to EPI and 5-Fu. Moreover, our results provide the guidance of individual treatment for breast cancer patients who are foreboded a poor prognosis by the presence of high PKM2 status.
Collapse
Affiliation(s)
- Yang Lin
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Feng Lv
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Fangfang Liu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaojing Guo
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Yu Fan
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Feng Gu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jun Gu
- 2. Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, United States
| | - Li Fu
- 1. Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| |
Collapse
|
7
|
Improved antitumor effect of paclitaxel administered in vivo as pH and glutathione-sensitive nanohydrogels. Int J Pharm 2015; 492:10-9. [PMID: 26160666 DOI: 10.1016/j.ijpharm.2015.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023]
Abstract
Most antitumor drugs usually affect not only rapidly dividing cells, such as those in tumors, but also highly proliferative cells in normal tissues. This nonspecific drawback could be successfully solved by using nanocarriers as controlled drug delivery systems. In this work, pH and redox-responsive nanohydrogels (NG) based on N-isopropylacrilamide (NIPA), N-hydroxyethyl acrylamide (HEEA) 2-acrylamidoethyl carbamate (2AAECM) and N,N'-cystaminebisacrylamide (CBA) as crosslinker were evaluated as bioreducible paclitaxel (PTX) nanocarriers for improving the accumulation of the drug within the tumor tissue and avoiding its conventional side effects. A single dose of PTX solution, unloaded-NHA 80/15/5CBA NG and PTX-loaded NHA 80/15/5-CBA NG (30 mg/kg PTX equivalent) were subcutaneously injected in female athymic nude mice bearing HeLa human tumor xenografts. PTX-loaded nanohydrogels showed higher antitumor activity than free PTX, as tumor evolution and Ki67 detection demonstrated. Histological tumor images revealed a higher content of defective mitotic figures and apoptotic bodies in PTX- treated tumors than in control or unloaded NG treated tumor samples. Nanohydrogels injection did not change any biochemical blood parameters, which means no liver or kidney damage after NG injection. However, differences in antioxidant defenses in MPS systems (liver, kidney and spleen) were observed among treatments, which may indicate an oxidative stress response after PTX injection.
Collapse
|