1
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Wang Y, Su P, Zhuo Z, Jin Y, Zeng R, Wu H, Huang H, Chen H, Li Z, Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2023; 643:111-120. [PMID: 36592584 DOI: 10.1016/j.bbrc.2022.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.
Collapse
Affiliation(s)
- Yilin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Peizhu Su
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yabin Jin
- Department of Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiwen Huang
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zhaotao Li
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China.
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Efthymakis K, Neri M. The role of Zinc L-Carnosine in the prevention and treatment of gastrointestinal mucosal disease in humans: a review. Clin Res Hepatol Gastroenterol 2022; 46:101954. [PMID: 35659631 DOI: 10.1016/j.clinre.2022.101954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023]
Abstract
Zinc L-carnosine is a pharmaceutical compound with direct mucosal cytoprotective and anti-inflammatory action through its antioxidative effects, cytokine modulation and membrane-stabilizing properties. Chemically, it is not an anti-secretory, antacid or raft-forming agent; its properties are mainly mediated by its higher affinity for damaged mucosa that permits the release of zinc locally by ligand exchange. Beneficial effects on various types of mucosal damage have been described in vitro and in vivo, in both animals and humans. It has been shown to promote repair of mucosal injury in human studies and has been widely used for the treatment of peptic ulcers, chemoradiotherapy-induced oral mucositis and esophagitis. More recently, the therapeutic applications of Zinc L-carnosine have been extended to the prevention and cure of various types of intestinal damage, including ulcerative colitis, iatrogenic ulcers after operative endoscopy, hemorrhoidal disease and impaired intestinal permeability. This review concentrates mainly on the current and future applications of zinc L-carnosine in gastrointestinal disease, and may be of use to gastroenterologists and endoscopists. It describes the therapeutic principles and benefits of this interesting molecule and discusses the potential future fields of interest for clinical use in humans.
Collapse
Affiliation(s)
- Konstantinos Efthymakis
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, Chieti, Italy
| | - Matteo Neri
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, Chieti, Italy; Department of Medicine and Ageing Sciences and Center for Advanced Studies and Technology (C.A.S.T.), University "G. D'Annunzio", Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
Drug repositioning of polaprezinc for bone fracture healing. Commun Biol 2022; 5:462. [PMID: 35577977 PMCID: PMC9110432 DOI: 10.1038/s42003-022-03424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures. Polaprezinc promoted both osteoblast and osteoclast differentiation and altered YAP protein expression in vitro, and animals treated with polaprezinc showed greater bone formation in their fracture calluses after 21 days.
Collapse
|
5
|
Pietroletti R, Giuliani A, Buonanno A, Mattei A, Fiasca F, Gallo G. Efficacy and Tolerability of a New Formulation in Rectal Ointment Based on Zn-L-Carnosine (Proctilor®) in the Treatment of Haemorrhoidal Disease. Front Surg 2022; 9:818887. [PMID: 35402488 PMCID: PMC8993583 DOI: 10.3389/fsurg.2022.818887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/27/2022] [Indexed: 01/05/2023] Open
Abstract
Haemorrhoidal disease (HD) shows high prevalence in western countries, reaching 4.4% per year in the US. Topical preparations are the first-line treatments, which are readily available as “over-the-counter” (OTC) products, often containing a nonstandardised mixture of “natural” remedies, or anaesthetics or cortisol;those latter are not free from undesirable effects. The Zinc-L-Carnosine is a cytoprotective compound, promoting mucosal repair in the gastrointestinal tract and also in mucosal repair, following radiation injuries to the rectum as well as in ulcerative colitis. Our aim was to study the efficacy of Zinc-L-Carnosine in relieving acute symptoms of HD, testing a preparation in the rectal ointment, Proctilor®, in patients complaining of bleeding or thrombosed piles. In a multicentre open trial, 21 patients older than 18 years of age were enrolled. The symptoms of HD were graded according to the Haemorrhoidal Disease Symptoms Score (HDSS) in association with the Short Health Scale (SHS) to assess the influence of HD on quality of life. The pain was assessed with the VAS score, bowel habit by means of the Bristol scale. The patients were evaluated at enrolment (T0) and 2 (T1) and 4 (T2) weeks of treatment with Proctilor® rectal ointment. There were 10 men and 11 women; mean age, 49 years. Pain, bleeding, and thrombosis were all significantly reduced after treatment; the mean VAS score decreased from 4.71 ± 3.05 at T0 to.52 ± 0.87 and.05 ± 0.22 at T1 and T2, respectively; (mean ± SD; p < 0.001 in both cases). Similarly, the HDSS score showed to be significantly reduced between T0, T1 (8.05 ± 4.55 vs. 1.14 ± 1.01), and T2 (8.05 ± 4.55 vs. 24 ± 0.44) (mean ± SD; p < 0.001 in both cases). Quality of life showed to be improved as the SHS score decreased significantly with treatment (7.90 ± 4.17 at T0 vs. 4.24 ± 0.44 at T1 vs. 4.05 ± 0.22 at T2; mean ± SD; p < 0.001 in both cases). The Bristol score of defecation remained substantially unchanged. No side effects or discontinuation of treatment were reported. Results of our investigation suggest a role of Proctilor® rectal ointment in treating symptomatic HD with good results and an excellent safety profile. However, our preliminary results encourage further studies on a larger number of patients to confirm the role of Zinc-L-Carnosine in the rectal ointment for the topical treatment of HD.
Collapse
Affiliation(s)
- Renato Pietroletti
- Surgical Coloproctology University of L'Aquila—Hospital Val Vibrata, Sant'Omero, Italy
- *Correspondence: Renato Pietroletti
| | - Antonio Giuliani
- General Surgery University of L'Aquila—Hospital San Salvatore, L'Aquila, Italy
| | - Alberto Buonanno
- General Surgery ASREM-AREA 5, Hospital San Benedetto del Tronto, San Benedetto del Tronto, Italy
| | - Antonella Mattei
- Public Health Section—Department of Life Health and Environmental Sciences University of L'Aquila, L'Aquila, Italy
| | - Fabiana Fiasca
- Public Health Section—Department of Life Health and Environmental Sciences University of L'Aquila, L'Aquila, Italy
| | - Gaetano Gallo
- Department of Surgery University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Korany DA, Said RS, Ayoub IM, Labib RM, El-Ahmady SH, Singab ANB. Protective effects of Brownea grandiceps (Jacq.) against ϒ-radiation-induced enteritis in rats in relation to its secondary metabolome fingerprint. Biomed Pharmacother 2022; 146:112603. [PMID: 35062069 DOI: 10.1016/j.biopha.2021.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022] Open
Abstract
Radiation enteritis is the most common complication of radiotherapy in patients with pelvic malignancies. Thus, the radioprotective activity of the total hydro-alcoholic extract (BGE) and the ethyl acetate soluble fraction (EAF) of Brownea grandiceps leaves was evaluated against ϒ-radiation-induced enteritis in rats. (BGE) and (EAF) were characterized using HPLC-PDA-ESI-MS/MS analysis. The total phenolic and flavonoid contents were also quantified. In vivo administration of (BGE) (400 mg/kg) and (EAF) (200 & 400 mg/kg) prevented intestinal injury and maintained the mucosal integrity of irradiated rats through increasing villi length and promoting crypt regeneration. Also, (EAF) showed more potent antioxidant activity than (BGE) through reduction of MDA level and enhancement of GSH content and catalase enzyme activity. (BGE) and (EAF) down-regulated intestinal NF-κB expression leading to diminished expression of downstream inflammatory cytokine TNF-α. Moreover, (EAF) markedly reduced the expression of profibrotic marker TGF-β1. Seventy-nine compounds were tentatively identified, including flavonoids, proanthocyanidins, polar lipids and phenolic acids. (EAF) showed significantly higher total phenolic and flavonoid contents, as compared to (BGE). Results revealed remarkable radioprotective activity of (BGE) and (EAF), with significantly higher activity for (EAF). The chemical constituents of (BGE) and (EAF) strongly supported their radioprotective activity. To the best of our knowledge, the present study describes for the first time the radioprotective activity of B. grandiceps leaves in relation to its secondary metabolome fingerprint; emphasizing the great promise of B. grandiceps leaves, especially (EAF), to be used as natural radio-protective agent.
Collapse
Affiliation(s)
- Doaa A Korany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt.
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Li M, Sun Z, Zhang H, Liu Z. Recent advances on polaprezinc for medical use (Review). Exp Ther Med 2021; 22:1445. [PMID: 34721687 DOI: 10.3892/etm.2021.10880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The present study described the chemical and biological properties of zinc complex of L-carnosine (L-CAZ; generic name, polaprezinc; chemical name, catena-(S)-[µ-[N(α)-(3-aminopropionyl) histidinato (2-) N1, N2, O: N(τ)]-zinc], molecular formula, C9H14N4O3Zn; molecular weight, 291.6404; CAS registry number, 107667-60-7). Characterized as a white or yellowish white crystalline powder, this drug is insoluble in glacial acetic acid and almost insoluble in water, methanol, ethanol and ether. It is soluble in dilute hydrochloric acid, dilute nitric acid and sodium hydroxide solution, and its melting point is 260-270˚C. Polaprezinc is an anti-ulcer drug that was jointly studied and developed by Hamari Chemicals Co., Ltd. and Zeria Pharmaceutical Co., Ltd., and was first approved in Japan in 1994. This review article summarizes the research advances of polaprezinc, including the patents, preparations, synthetic routes, pharmacokinetics, pharmacological effects and application in clinical research.
Collapse
Affiliation(s)
- Mingru Li
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhen Sun
- Department of Gastroenterology, Jilin People's Hospital, Jilin City, Jilin 132000, P.R. China
| | - Hong Zhang
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
8
|
Park JM, Lee HJ, Sikiric P, Hahm KB. BPC 157 Rescued NSAID-cytotoxicity Via Stabilizing Intestinal Permeability and Enhancing Cytoprotection. Curr Pharm Des 2021; 26:2971-2981. [PMID: 32445447 DOI: 10.2174/1381612826666200523180301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023]
Abstract
The stable gastric pentadecapeptide BPC 157 protects stomach cells, maintains gastric integrity against various noxious agents such as alcohol, nonsteroidal anti-inflammatory drugs (NSAIDs), and exerts cytoprotection/ adaptive cytoprotection/organoprotection in other epithelia, that is, skin, liver, pancreas, heart, and brain. Especially BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels including thrombosis, prolonged bleeding, and thrombocytopenia. In this background, we put the importance of BPC 157 as a possible way of securing GI safety against NSAIDs-induced gastroenteropathy since still unmet medical needs to mitigate NSAIDs-induced cytotoxicity are urgent. Furthermore, gastrointestinal irritants such as physical or mental stress, NSAIDs administration, surfactants destroyer such as bile acids, alcohol can lead to leaky gut syndrome through increasing epithelial permeability. In this review article, we described the potential rescuing actions of BPC 157 against leaky gut syndrome after NSAIDs administration for the first time.
Collapse
Affiliation(s)
- Jong M Park
- Department of Pharmacology Daejeon University College of Oriental Medicine, Daejeon, Korea
| | - Ho J Lee
- University of Gachon Lee Gil Ya Cancer and Diabetes Institute, Incheon, Korea
| | - Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ki B Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea.,Digestive Disease Center, CHA University Bundang Medical Center, Pangyo, Korea
| |
Collapse
|
9
|
Qiu X, Dong K, Guan J, He J. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol 2020; 84:106517. [PMID: 32361189 DOI: 10.1016/j.intimp.2020.106517] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
The small intestine is known to be particularly sensitive to radiation, and the major limiting factor of radiotherapy is the gastrointestinal syndrome that subsequently develops after its administration. The detrimental effects of radiation are mostly mediated via the overproduction of reactive oxygen species (ROS), especially the hydroxyl radical (·OH). Because hydrogen is a selective ·OH scavenger, we hypothesized that hydrogen might exert a protective effect against radiation-induced intestinal damage. Herein, radiation models were built both in mice and in an intestinal crypt epithelial cell (IEC-6) line. In the animal experiment, we demonstrated that hydrogen-rich saline significantly reduced radiation-induced intestinal mucosal damage, improved intestinal function, and increased the survival rate. In addition, radiation-induced oxidative stress damage and systemic inflammatory response were also mitigated by hydrogen treatment. Moreover, hydrogen treatment decreased cell apoptosis and maintained intestinal epithelial cell proliferation in mice. In vitro experiments using the IEC-6 cell line showed that hydrogen-rich medium significantly inhibited ROS formation, maintained cell viability, and inhibited cell apoptosis. Importantly, hydrogen treatment prevented mitochondrial depolarization, cytochrome c release, and activity of caspase-3, caspase-9, and PARP. Moreover, the decreased expression of Bcl-xl and Bcl-2 and the increased expression of Bax protein were also blocked by hydrogen treatment. In conclusion, our study concurrently demonstrated that hydrogen provides an obviously protective effect on radiation-induced intestinal and cell injuries. Our work demonstrated that this protective effect might be due to the blockage of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, The Eighth Medical Center, Chinese PLA(People's Liberation Army) General Hospital, Beijing 100091, China
| | - Kaisheng Dong
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Jingzhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - JianMiao He
- Department of General Surgery, The Eighth Medical Center, Chinese PLA(People's Liberation Army) General Hospital, Beijing 100091, China.
| |
Collapse
|
10
|
Dietterle J, Oppermann H, Glasow A, Neumann K, Meixensberger J, Gaunitz F. Carnosine increases efficiency of temozolomide and irradiation treatment of isocitrate dehydrogenase-wildtype glioblastoma cells in culture. Future Oncol 2019; 15:3683-3691. [PMID: 31664860 DOI: 10.2217/fon-2019-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The naturally occurring dipeptide carnosine (CAR) has been considered for glioblastoma therapy. As CAR also protects against ionizing irradiation (IR), we investigated whether it may counteract standard therapy consisting of postsurgery IR and treatment with temozolomide (TMZ). Materials & methods: Four isocitrate dehydrogenase-wildtype primary cell cultures were exposed to different doses of IR and different concentrations of TMZ and CAR. After exposure, viability under the different conditions and combinations of them was determined. Results: All cultures responded to treatment with TMZ and IR with reduced viability. CAR further decreased viability when TMZ and IR were combined. Conclusion: Treatment with CAR does not counteract glioblastoma standard therapy. As the dipeptide also protects nontumor cells from IR, it may reduce deleterious side effects of treatment.
Collapse
Affiliation(s)
- Johannes Dietterle
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Henry Oppermann
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiooncology, University of Leipzig, Leipzig, Germany
| | | | | | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Li K, Zhang J, Cao J, Li X, Tian H. 1,4-Dithiothreitol treatment ameliorates hematopoietic and intestinal injury in irradiated mice: Potential application of a treatment for acute radiation syndrome. Int Immunopharmacol 2019; 76:105913. [PMID: 31627170 DOI: 10.1016/j.intimp.2019.105913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Radiation exposure poses a significant threat to public health, which can lead to acute hematopoietic system and intestinal system injuries due to their higher radiation sensitivity. Hence, antioxidants and thiol-reducing agents could have a potential protective effect against this complication. The dithiol compound 1,4-dithiothreitol (DTT) has been used in biochemistry, peptide/protein chemistry and clinical medicine. However, the effect of DTT on ionizing radiation (IR)-induced hematopoietic injury and intestinal injury are unknown. The current investigation was designed to evaluate the effect of DTT as a safe and clinically applicable thiol-radioprotector in irradiated mice. DTT treatment improved the survival of irradiated mice and ameliorated whole body irradiation (WBI)-induced hematopoietic injury by attenuating myelosuppression and myeloid skewing, increasing self-renewal and differentiation of hematopoietic progenitor cells/hematopoietic stem cells (HPCs/HSCs). In addition, DTT treatment protected mice from abdominal irradiation (ABI)-induced changes in crypt-villus structures and function. Furthermore, treatment with DTT significantly enhanced the ABI-induced reduction in Olfm4 positive cells and offspring cells of Lgr5+ stem cells, including lysozyme+ Paneth cells and Ki67+ cells. Moreover, IR-induced DNA strand break damage, and the expression of proapoptotic-p53, Bax, Bak protein and antiapoptotic-Bcl-2 protein were reversed in DTT treated mice, and DTT also promoted small intestine repair after radiation exposure via the p53 intrinsic apoptotic pathway. In general, these results demonstrated the potential of DTT for protection against hematopoietic injury and intestinal injury after radiation exposure, suggesting DTT as a novel effective agent for radioprotection.
Collapse
Affiliation(s)
- Kui Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Jian Cao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
12
|
Guven B, Can M, Piskin O, Aydin BG, Karakaya K, Elmas O, Acikgoz B. Flavonoids protect colon against radiation induced colitis. Regul Toxicol Pharmacol 2019; 104:128-132. [PMID: 30878575 DOI: 10.1016/j.yrtph.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/23/2019] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
Abstract
Radiation induced colitis is one the most common clinical issue for patients receiving radiotherapy. For this reason, we aimed to investigate the effect of antioxidant-effective flavonoids hesperidin and quercetin on the intestinal damage induced by radiation in this study. TNF-alpha, interleukin-10 (IL-10), heat shock protein 70 (HSP 70) and caspase 3, 8, 9 markers of apoptotic pathways were measured in the colon tissues of irradiated acute intestinal damage by enzyme-linked immunosorbent assay (ELISA). Irradiation of rats caused a significance increase of TNF-alpha, caspase 3/8/9 and decrease of IL-10 concentrations. Hesperidin and quercetin treatment resulted in decreased levels of TNF-alpha and increased levels of IL-10. Quercetin significantly decreased caspase 3/8/9 levels. Hesperidin produced a decreased of caspase 3/8/9 levels compared with irradiation group but this was statistically not significant. Only significant alteration of HSP 70 were seen in hesperidin treated rats. Further studies are needed to elucidate the mechanism by which flavonoids induced signaling provides protection against apoptosis and inflammation.
Collapse
Affiliation(s)
- Berrak Guven
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Biochemistry, Zonguldak, Turkey.
| | - Murat Can
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Biochemistry, Zonguldak, Turkey
| | - Ozcan Piskin
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Anesthesiology and Reanimation, Zonguldak, Turkey
| | - Bengu Gulhan Aydin
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Anesthesiology and Reanimation, Zonguldak, Turkey
| | - Kemal Karakaya
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of General Surgery, Zonguldak, Turkey
| | - Ozlem Elmas
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Radiation Oncology, Zonguldak, Turkey
| | - Bilgehan Acikgoz
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Public Health, Zonguldak, Turkey
| |
Collapse
|
13
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
14
|
Protective effect of polydatin on radiation-induced injury of intestinal epithelial and endothelial cells. Biosci Rep 2018; 38:BSR20180868. [PMID: 30333253 PMCID: PMC6239250 DOI: 10.1042/bsr20180868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the radioprotective effect of polydatin (PD) on crypt and endothelial cells of the small intestines of C57BL/6 mice that received abdominal irradiation (IR). Mice were treated with 6 MV X-ray (20 Gy) abdominal IR at a dose rate of 200 cGy/min. Thirty minutes before or after IR, mice were intraperitoneally injected with PD. The rate of survival of the mice at 30 days after IR was determined. The duodenum (upper small intestine), jejunum (middle small intestine), and ileum (lower small intestine) were collected and subjected to hematoxylin and eosin staining. Tissue sample sections were analyzed through light microscopy, and the lengths of at least 20 intestinal villi were measured in each group; the average number of crypts was obtained from 10 intestinal samples in each group. Microvessel density was assessed using CD31-positive (brown) vascular endothelial cells/cell clusters. FHs74Int cell proliferation was measured using the CCK-8 assay. PD administration (25 mg/kg) before IR was the most effective in prolonging the survival of C57BL/6 mice. PD reduced radiation-induced injury of intestinal villi, prevented loss of crypts, increased intestinal crypt growth, protected against IR-induced intestinal injury, and enhanced the proliferative potential and reduced the apoptosis of FHs74Int cells after IR. Moreover, PD increased small intestinal MVD and reduced the apoptosis of intestinal microvascular endothelial cells in mice after IR. Therefore, PD was found to be able to protect the two types of cells from radiation damage and to thus alleviate radiation-induced injury of small intestine.
Collapse
|
15
|
Doi H, Kuribayashi K, Kijima T. Utility of polaprezinc in reducing toxicities during radiotherapy: a literature review. Future Oncol 2018; 14:1977-1988. [PMID: 30074413 DOI: 10.2217/fon-2018-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chemoradiotherapy is important for treating malignancies. However, radiation-induced toxicities develop as chemoradiotherapy-related complications. Various agents reduce or prevent toxicities, but there are no standard treatments. Polaprezinc (PZ), a chelating compound used for gastric ulcers, has antioxidant and free radical scavenging effects. Although few studies have evaluated PZ and radiation-induced normal tissue damage, several clinical studies have shown the efficacy of PZ for oral mucositis, esophagitis, proctitis and taste alterations during and after radiotherapy. Moreover, preclinical data support the clinical data, indicating good potential of testing PZ in future trials. However, as there are only few well-documented review articles on PZ use in cancer treatment, we conducted this literature review. PZ reduced several radiation-induced toxicities and improved the quality of life.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Radiation Oncology, Meiwa Cancer Clinic, Nishinomiya, Hyogo, Japan
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
16
|
Liu Z, Xie W, Li M, Teng N, Liang X, Zhang Z, Yang Z, Wang X. Oral Administration of Polaprezinc Attenuates Fluorouracil-induced Intestinal Mucositis in a Mouse Model. Basic Clin Pharmacol Toxicol 2017; 121:480-486. [PMID: 28667794 DOI: 10.1111/bcpt.12841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyang Liu
- Tumor Marker Research Center; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Wenbo Xie
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Mingru Li
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Nan Teng
- Jilin Province Broadwell Pharmaceutical Co., Ltd.; Changchun China
| | - Xiao Liang
- State Key Laboratory of Molecular Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Ziqiang Zhang
- State Key Laboratory of Molecular Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Zhaogang Yang
- NSF Nanoscale Science and Engineering Center (NSEC); The Ohio State University; Columbus OH USA
| | - Xiaobing Wang
- Tumor Marker Research Center; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|