1
|
Wei H, Dong C, Li X. Treatment Options for Hepatocellular Carcinoma Using Immunotherapy: Present and Future. J Clin Transl Hepatol 2024; 12:389-405. [PMID: 38638377 PMCID: PMC11022065 DOI: 10.14218/jcth.2023.00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.
Collapse
Affiliation(s)
- Hongbin Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, Gansu, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Distribution and clinical significance of circulating CD8 +CD28 - regulatory T cells in the peripheral blood of patients with pulmonary tuberculosis. BMC Pulm Med 2022; 22:291. [PMID: 35907816 PMCID: PMC9338636 DOI: 10.1186/s12890-022-02088-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background Regulatory T cells (Treg cells) in the peripheral blood of patients with pulmonary tuberculosis (PTB) may be closely related to the progression of PTB. In this study, the distribution characteristics and clinical importance of CD8+CD28− Treg cells in patients with tuberculosis were systematically analyzed, and the role and importance of CD8+CD28− Treg cells in influencing the immune response and progression of tuberculosis were discussed, which will provide immunological indices and reference values for the clinical diagnosis of tuberculosis.
Methods Flow cytometry, sputum smears and computed tomography imaging were used to analyze the distribution characteristics of CD8+CD28− Treg cells in the peripheral blood of patients with PTB and the correlation between CD8+CD28−Treg cells and clinical and immune indices. Results The percentages of CD4+CD25high and CD8+CD28− Treg cells in the peripheral blood of patients with PTB were significantly higher than those in the healthy control (HC) group. Further analysis showed that the percentage of CD4+CD25highTreg cells in the Stage II group was significantly higher than that in the HC group. The percentages of CD4+CD25high and CD8+CD28− Treg cells increased significantly in patients in the Stage II group. The proportion of CD8+CD28− Treg cells was directly proportional to the degree of positivity in sputum smears, while CD4+CD25highTreg cells did not exhibit this trend. The correlations between the percentage of CD4+CD25high and CD8+CD28− Treg cells and the percentage of lymphocyte subsets were examined. The percentage of CD8+CD28− Treg cells was negatively correlated with the percentage of CD4+T cells and positively correlated with the CD8+T cell percentage in the HC and PTB groups. The percentage of CD4 + CD25highTreg cells was positively correlated with the percentage of CD4+T cells only in the PTB group. Conclusions This study was the first to show that the proportion of CD8+CD28− Treg cells in the peripheral blood of patients with PTB was significantly increased, and the increase in CD8+CD28− Treg cells was related to the progression of PTB, which may affect the proportion of immune cell subsets by inhibiting the immune response, resulting in the progression of PTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02088-7.
Collapse
|
3
|
Roddy H, Meyer T, Roddie C. Novel Cellular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:504. [PMID: 35158772 PMCID: PMC8833505 DOI: 10.3390/cancers14030504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Most patients present with advanced disease, and current gold-standard management using tyrosine kinase inhibitors or immune checkpoint inhibitors (ICIs) offers modest clinical benefit. Cellular immune therapies targeting HCC are currently being tested in the laboratory and in clinical trials. Here, we review the landscape of cellular immunotherapy for HCC, defining antigenic targets, outlining the range of cell therapy products being applied in HCC (such as CAR-T and TCR-T), and exploring how advanced engineering solutions may further enhance this therapeutic approach.
Collapse
Affiliation(s)
- Harriet Roddy
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
| | - Tim Meyer
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Claire Roddie
- UCL Cancer Institute, London WC1E 6DD, UK; (H.R.); (T.M.)
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
4
|
Clinical Studies on Cytokine-Induced Killer Cells: Lessons from Lymphoma Trials. Cancers (Basel) 2021; 13:cancers13236007. [PMID: 34885117 PMCID: PMC8656601 DOI: 10.3390/cancers13236007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Lymphoma is a heterogeneous group of neoplasms including over 70 different subtypes. Its biological characteristic of deriving from lymphoid tissues makes it ideal for immunotherapy. In this paper, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy. We also reviewed pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas. Abstract Cancer is a complex disease where resistance to therapies and relapses often pose a serious clinical challenge. The scenario is even more complicated when the cancer type itself is heterogeneous in nature, e.g., lymphoma, a cancer of the lymphocytes which constitutes more than 70 different subtypes. Indeed, the treatment options continue to expand in lymphomas. Herein, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy and other pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas.
Collapse
|
5
|
Xu H, Qin W, Feng H, Song D, Yang X, Zhang J. Analysis of the Clinical Efficacy of Dendritic Cell -cytokine Induced Killer Cell-based Adoptive Immunotherapy for Colorectal Cancer. Immunol Invest 2020; 50:622-633. [PMID: 32718264 DOI: 10.1080/08820139.2020.1781881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: To analyze the efficacy and safety of dendritic cell - cytokine - induced killer (DC-CIK) immunotherapy combined with chemotherapy for colorectal cancer. Method: A retrospective analysis was conducted in 116 patients from February 2012 to December 2017, who were divided into postoperative adjuvant chemotherapy group alone, combined DC-CIK immunotherapy group, advanced cancer palliative care group, and palliative care + DC-CIK immunotherapy group, to evaluate cellular immune function, disease-free survival(DFS) and overall survival(OS). Results: In the adjuvant therapy and palliative care group, the percentages of CD3+, CD8+ and NK cells after treatment were significantly lower than before, whereas in the other two groups given DC-CIK immunotherapy, the percentages of CD3+, CD8+, NK and NKT cells after treatment were all higher than before, with a significant increase compared with the chemotherapy group (P < .05). DFS (42.4 ± 5.26 m) in the group receiving postoperative adjuvant chemotherapy + DC-CIK immunotherapy was significantly longer than that (23.5 ± 2.79 m) in the group only given postoperative adjuvant chemotherapy (P < .05). OS in the group receiving palliative care + DC-CIK immunotherapy was slightly longer than that in the group only given palliative care for advanced cancer (29 m vs 26 m, P > .05).Conclusion: Combination with DC-CIK immunotherapy could effectively improve cellular immune function. Postoperative adjuvant chemotherapy in combination with DC-CIK immunotherapy could significantly prolong DFS, but palliative care in combination with DC-CIK immunotherapy did not significantly prolong OS in patients with advanced cancer.
Collapse
Affiliation(s)
- Huiru Xu
- Department of Thoracic Oncology, Cancer Center, Shanxi Academy of Medical Sciences (Shanxi Bethune Hospital), Taiyuan, China
| | - Weishan Qin
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Huijing Feng
- Department of Thoracic Oncology, Cancer Center, Shanxi Academy of Medical Sciences (Shanxi Bethune Hospital), Taiyuan, China
| | - Dong Song
- Department of Thoracic Oncology, Cancer Center, Shanxi Academy of Medical Sciences (Shanxi Bethune Hospital), Taiyuan, China
| | - Xiaoling Yang
- Department of Thoracic Oncology, Cancer Center, Shanxi Academy of Medical Sciences (Shanxi Bethune Hospital), Taiyuan, China
| | - Junping Zhang
- Department of Thoracic Oncology, Cancer Center, Shanxi Academy of Medical Sciences (Shanxi Bethune Hospital), Taiyuan, China
| |
Collapse
|
6
|
Zhang Y, Schmidt-Wolf IGH. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol 2020; 235:9291-9303. [PMID: 32484595 DOI: 10.1002/jcp.29827] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Cytokine-induced killer (CIK) cells represent an exceptional T-cell population uniting a T cell and natural killer cell-like phenotype in their terminally differentiated CD3+ CD56+ subset, which features non-MHC-restricted tumor-killing activity. CIK cells have provided encouraging results in initial clinical studies and revealed synergistic antitumor effects when combined with standard therapeutic procedures. We established the international registry on CIK cells (IRCC) to collect and evaluate clinical trials for the treatment of cancer patients in 2010. Moreover, our registry set new standards on the reporting of results from clinical trials using CIK cells. In the present update, a total of 106 clinical trials including 10,225 patients were enrolled in IRCC, of which 4,889 patients in over 30 distinct tumor entities were treated with CIK cells alone or in combination with conventional or novel therapies. Significantly improved median progression-free survival and overall survival were shown in 27 trials, and 9 trials reported a significantly increased 5-year survival rate. Mild adverse effects and graft-versus-host diseases were also observed in the studies. Recently, more efforts have been put into the improvement of antitumoral efficacy by CIK cells including the administration of immune checkpoint inhibitors and modification with chimeric antigen receptorc. The minimal toxicity and multiple improvements on their tumor-killing activity both make CIK cells a favorable therapeutic tool in the clinical practice of cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Shi Y, Men X, Li X, Yang Z, Wen H. Research progress and clinical prospect of immunocytotherapy for the treatment of hepatocellular carcinoma. Int Immunopharmacol 2020; 82:106351. [PMID: 32143005 DOI: 10.1016/j.intimp.2020.106351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
As a common malignant tumor, hepatocellular carcinoma (HCC) has high fatality rate due to its strong metastasis and high degree of malignancy. Current treatment strategies adopted in clinical practice were still conventional surgery, assisted with interventional therapy, radiotherapy and chemotherapy. However these treatments have limited effects with high recurrence rate. Current research progress of immunocytotherapy has shown that tumor cells can be directly identified and killed by stimulating the immune function and enhancing the anti-tumor immunity in tumor microenvironment. Targeted immunotherapeutics have therefore become the hope of conquering cancer in the future. It can kill tumor cells without damaging the body's immune system and function, restore and strengthen the body's natural anti-tumor immune system. It can reduce the toxic side effects of radiotherapy and chemotherapy, reduce the recurrence rate and prolong the survival period of patients with HCC. Currently, the immune cells widely studied are mainly as follows: Dendritic cells (DC), Cytokine-induced killer (CIK), DC-CIK, Chimeric antigen receptor T cells (CAR-T), Tumor infiltrating lymphocyte (TIL) and Natural killer cell (NK). Immunocytotherapy is a long-term treatment method, some studies have combined traditional therapy with immunocytotherapy and achieved significant effects, providing experimental basis for the application of immunocytotherapy. However, there are still some difficulties in the clinical application of immune cells. In this article, we discuss the application of immunocytotherapy in the clinical treatment of HCC, their effectiveness either alone or in combination with conventional therapies, and how future immunocytotherapeutics can be further improved from investigations in tumour immunology.
Collapse
Affiliation(s)
- Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Xiaoping Men
- Department of Clinical Laboratory, The First Affiliated Hospital to Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Xueting Li
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Zhicun Yang
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Hongjuan Wen
- School of Health Management, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
8
|
Liu J, Liu J, Xiao L, Wang Y, Liu G, Li J, Liang F. Identification of Differentially Expressed miRNAs in the Response of Spleen CD4 + T Cells to Electroacupuncture in Senescence-Accelerated Mice. Cell Biochem Biophys 2020; 78:89-100. [PMID: 32026263 DOI: 10.1007/s12013-020-00900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Immunological aging impairs immune system protection in the body and is associated with high morbidity and mortality in aged people. Electroacupuncture (EA) has been proven to boost immunity. The purpose of this study was to identify the effect of EA on miRNA expression in the immune system of senescence-accelerated mouse P8 (SAMP8) mice. We utilized SAMP8 mice as an aging model and detected the altered expression of miRNAs in CD4+ T cells after EA stimulation by deep sequencing. Differentially expressed miRNAs in different groups were identified using Venn diagrams and functional analysis was performed. The effect of EA on the expression of the identified miRNAs was investigated in natural-aged C57BL/6J mice and the biological functions of miR-301a-3p and miR-181a-1-3p in CD4+ T cells were identified. Four upregulated and two downregulated miRNAs were identified in group I (EA-SAMP8 vs. shEA-SAMP8); 41 upregulated and nine downregulated miRNAs were identified in group II (EA-SAMP8 vs. SAMP8); 42 upregulated and eight downregulated miRNAs were identified in group III (shEA-SAMP8 vs. SAMP8). The three groups shared four overlapping differentially expressed miRNAs, and 10 miRNAs were only found in group II. Gene Ontology enrichment analysis of these 14 miRNAs revealed that their target genes were enriched in 229 "biological process" categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the targets were significantly mapped in 76 pathways. Furthermore, five significant pathways were involved in T cell differentiation. MiRNA-gene-net showed that miR-582-5p, miR-17-5p, miR-144-3p, miR-451a, and miR-301a-3p regulated the most important target genes in these pathways. The expression of these miRNAs was also regulated by EA in aged C57BL/6J mice. In addition, miR-301a-3p was involved in regulating the expression of inflammatory factors by mediating the differentiation of CD4+ T cells in C57BL/6J mice. Analysis of miRNAs indicated that EA contributes to maintaining the balance of CD4+ T cell differentiation in the aging immune system. These results provide novel insights into the effect of EA in immunological aging.
Collapse
Affiliation(s)
- Jianmin Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China. .,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China.
| | - Jing Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Xiao
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yawen Wang
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Guangya Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Li
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China
| | - Fengxia Liang
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China
| |
Collapse
|