1
|
Chantre-justino M, Silvestre RT, De Castro TL, Luz E, Pinheiro RDCES, Caruso A, Lopes ACDS, Meohas W, Alves G, Ornellas MHF. Genetic profiling of osteosarcoma in an adolescent using a next‑generation sequencing panel and Sanger sequencing: A case report and review of the literature. Biomed Rep 2025; 22:42. [PMID: 39810900 PMCID: PMC11729137 DOI: 10.3892/br.2025.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies. The present study described a case of an adolescent patient (16-years-old) who was diagnosed with conventional central OS in the right distal femur without the evidence of pulmonary metastases; the patient was treated with surgery and adjuvant chemotherapy. Genetic alterations in resected tumor tissue were investigated via next-generation sequencing (NGS) technology using a targeted NGS panel. Sanger sequencing was also performed to investigate somatic and germline TP53 mutations (exons 4-8). NGS analysis revealed an intratumor heterogeneity signature in OS tumor, including several single nucleotide variants identified in genes encoding tyrosine kinase proteins. No PCR products for TP53 exon 5 were detected in the tumor sample by PCR analysis prior to Sanger sequencing, suggesting a significant deletion in this exon. Sanger sequencing analysis revealed the missense variant TP53 c.712T>A (p.Cys238Ser) in tumor tissue sample, thus reinforcing the role of TP53 somatic mutations in OS development. Additionally, the TP53 c.215C>G (p.Pro72Arg) germline missense variant was identified in the peripheral blood sample. In conclusion, the findings provided new information on genetic aspects that may contribute to OS development, especially in pediatric patients.
Collapse
Affiliation(s)
- Mariana Chantre-justino
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafaele Tavares Silvestre
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Thiago Luz De Castro
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Eliane Luz
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Rafael De Castro E Silva Pinheiro
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Anabela Caruso
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Ana Cristina De Sá Lopes
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Walter Meohas
- Specialized Care Center for Orthopedic Oncology, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
2
|
Gopinatha Pillai MS, Aiswarya SU, Keerthana CK, Rayginia TP, Anto RJ. Targeting receptor tyrosine kinase signaling: Avenues in the management of cutaneous squamous cell carcinoma. iScience 2023; 26:106816. [PMID: 37235052 PMCID: PMC10206193 DOI: 10.1016/j.isci.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most frequently diagnosed cancer worldwide. Among the various types of NMSCs, cutaneous squamous cell carcinoma (cSCC) exhibits more aggressive phenotype and is also the second-most prevalent type. Receptor tyrosine kinases (RTK) triggers key signaling events that play critical roles in the development of various cancers including cSCC. Unsurprisingly, for this reason, this family of proteins has become the cynosure of anti-cancer drug discovery pipelines and is also being considered as attractive targets against cSCC. Though inhibition of RTKs in cSCC has yielded favourable results, there is still scope for bettering the therapeutic outcome. In this review, we discuss the relevance of RTK signaling in the progression of cutaneous squamous cell carcinoma, and observations from clinical trials that used RTK inhibitors against cSCC. Backed by results from preclinical studies, including those from our lab, we also give insights into the scope of using some natural products as effective suppressors of RTK signaling and skin carcinogenesis.
Collapse
Affiliation(s)
| | - Sreekumar U. Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Chenicheri K. Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Tennyson P. Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Kong L, Zhang Q, Mao J, Cheng L, Shi X, Yu L, Hu J, Yang M, Li L, Liu B, Qian X. A dual-targeted molecular therapy of PP242 and cetuximab plays an anti-tumor effect through EGFR downstream signaling pathways in colorectal cancer. J Gastrointest Oncol 2021; 12:1625-1642. [PMID: 34532116 DOI: 10.21037/jgo-21-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) and its downstream Ras-mitogen-activated protein kinase kinase (MAPKK, MEK)-extracellular regulated protein kinase (ERK) signaling pathway and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway play important roles in the pathogenesis of colorectal cancer (CRC). The combination therapy of anti-EGFR and anti-mTOR needs to be explored. Methods Here we combined the anti-EGFR monoclonal antibody cetuximab (CTX) with the mTOR inhibitor PP242 in CRC cell lines and mouse xenograft models and discussed the changes of EGFR downstream signaling pathways of CRC cell lines. Results In HT-29 cells and Caco-2 cells, combined application of CTX and PP242 significantly inhibited the proliferation of CRC cells in vivo and in vitro. In BRAF wild-type Caco-2 cells, combined application of CTX and PP242 inhibited the activation of the EGFR and its downstream signaling pathways. Conclusions Our research further demonstrates the effectiveness of the combined application of CTX and PP242 in inhibiting CRC cell lines from the perspective of cell proliferation, cell cycle, apoptosis, and mouse xenografts. We revealed that the combined application of CTX and PP242 can inhibit tumor growth and proliferation by inhibiting the phosphorylation of key molecules in EGFR downstream MEK-ERK and MEK 4/7 (MKK)-c-Jun N-terminal kinase (JNK) signaling pathways in BRAF wild-type CRC cells. In addition, we found that in BRAF mutant CRC cells, the monotherapy of PP242 resulted in negative feedback increased EGFR phosphorylation rates, accompanied by significant up-regulation of downstream MEK and ERK phosphorylation.
Collapse
Affiliation(s)
- Linghui Kong
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jialei Mao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Cheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Hu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mi Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
4
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
5
|
Galbiati D, Cavalieri S, Alfieri S, Resteghini C, Bergamini C, Orlandi E, Platini F, Locati L, Giacomelli L, Licitra L, Bossi P. Activity of platinum and cetuximab in cutaneous squamous cell cancer not amenable to curative treatment. Drugs Context 2020; 8:212611. [PMID: 32158481 PMCID: PMC7048124 DOI: 10.7573/dic.212611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Unresectable or metastatic cutaneous squamous cell cancers (cSCCs) are rare but potentially life-threatening diseases. In this setting, systemic therapy has a palliative intent with limited benefit, but there is no established consensus regarding the proper management of this tumour. This retrospective study aimed to review outcomes in patients with non-curable cSCC treated with platinum-based chemotherapy and cetuximab. Methods We considered 12 consecutive patients treated between June 2010 and March 2016. All patients had received previous treatment for the local disease. Results The overall response rate was 50%, and the disease control rate was 67%. Median progression-free survival and overall survival were 6.6 (95% confidence interval [CI]: 1.9–8.4) and 14.6 (95% CI: 9.4–20.1) months, respectively. The median duration of response was 4.8 months (95% CI: 1.2–5.9). The most frequent toxicities were skin reactions (58%; grade 3: 25%) and anaemia (10%). No grade 4 toxicities were observed. Conclusions Cetuximab and platinum-based chemotherapy were shown to be feasible and active in cSCC, with an acceptable toxicity profile, even if with a limited duration of response.
Collapse
Affiliation(s)
- Donata Galbiati
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Salvatore Alfieri
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Carlo Resteghini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Cristiana Bergamini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Ester Orlandi
- Radiotherapy 1-2 Units, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Platini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Laura Locati
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Luca Giacomelli
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy and Polistudium srl, Milan, Italy
| | - Lisa Licitra
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy.,University of Milan, Milan, Italy
| | - Paolo Bossi
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| |
Collapse
|
6
|
de Lima PO, Joseph S, Panizza B, Simpson F. Epidermal Growth Factor Receptor's Function in Cutaneous Squamous Cell Carcinoma and Its Role as a Therapeutic Target in the Age of Immunotherapies. Curr Treat Options Oncol 2020; 21:9. [PMID: 32016630 DOI: 10.1007/s11864-019-0697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Recent studies have evidenced the potential of combining anti-EGFR therapies with anti-PD-1/PD-L1 checkpoint therapies. Both anti-EGFR and anti-PD-1/PD-L1 have been separately tested in the treatment of cutaneous SCC (cSCC). Here, we review recent data on EGFR in the context of cancer progression, as a prognostic and as a therapeutic target in cSCC. Anti-EGFR/checkpoint immunotherapy and other combination therapy approaches are discussed. With the advent of immunotherapy, EGFR is still a valid cSCC target.
Collapse
Affiliation(s)
- Priscila Oliveira de Lima
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon Joseph
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Panizza
- Faculty of Medicine, University of Queensland, Woolloongabba, Queensland, Australia.,Otolaryngology-Head and Neck Surgery Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
7
|
Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients 2019; 11:nu11102376. [PMID: 31590362 PMCID: PMC6835707 DOI: 10.3390/nu11102376] [Citation(s) in RCA: 539] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Curcumin, a polyphenol extracted from Curcuma longa in 1815, has gained attention from scientists worldwide for its biological activities (e.g., antioxidant, anti-inflammatory, antimicrobial, antiviral), among which its anticancer potential has been the most described and still remains under investigation. The present review focuses on the cell signaling pathways involved in cancer development and proliferation, and which are targeted by curcumin. Curcumin has been reported to modulate growth factors, enzymes, transcription factors, kinase, inflammatory cytokines, and proapoptotic (by upregulation) and antiapoptotic (by downregulation) proteins. This polyphenol compound, alone or combined with other agents, could represent an effective drug for cancer therapy.
Collapse
Affiliation(s)
- Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg, Suite 431-1900 N 12th Street, Philadelphia, PA 19122, USA.
| | - Giuseppina Tommonaro
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34-80078 Pozzuoli, Italy.
| |
Collapse
|
8
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
9
|
Willenbacher E, Khan SZ, Mujica SCA, Trapani D, Hussain S, Wolf D, Willenbacher W, Spizzo G, Seeber A. Curcumin: New Insights into an Ancient Ingredient against Cancer. Int J Mol Sci 2019; 20:ijms20081808. [PMID: 31013694 PMCID: PMC6514995 DOI: 10.3390/ijms20081808] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer patients frequently use complementary medicine. Curcumin (CUR) and its derivates (from the extract of Curcuma longa L.) represent some of the most frequently used ones, having a long history in traditional Asian medicine. CUR was demonstrated, both in vitro and in vivo, to have significant anti-inflammatory effects, thus potentially counteracting cancer-promoting inflammation, which is a hallmark of cancer. CUR modulate a plethora of signaling pathways in cancer cells, comprising the NF-κB (nuclear factor k-light-chain-enhancer of activated B cells), the JAK/STAT (Janus-Kinase/Signal Transducers and Activators of Transcription), and the TGF-β (transforming growth factor-β) pathways. Furthermore, CUR confers properties of electron receptors, which destabilize radical oxygen species (ROS), explaining its antioxidant and anti-apopototic effects. Although CUR has a low bioavailability, its role in advanced cancer treatment and supportive care was addressed in numerous clinical trials. After promising results in phase I–II trials, multiple phase III trials in different indications are currently under way to test for direct anti-cancer effects. In addition, CUR exerts beneficial effects on cancer treatment-related neurotoxcity, cardiotoxicity, nephrotoxicity, hemato-toxicity, and others. More efficient galenic formulations are tested to optimze CUR’s usability in cancer treatment. This review should provide a comprehensive overview of basic science, and pre-clinical and clinical data on CUR in the field of oncology.
Collapse
Affiliation(s)
- Ella Willenbacher
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Shah Zeb Khan
- Department of Clinical Oncology, BINOR Cancer Hospital, Bannu 28100, Pakistan.
| | | | - Dario Trapani
- Department of Oncology and Hematology, University of Milan, European Institute of Oncology, 20122 Milan, Italy.
| | - Sadaqat Hussain
- Medical Oncology Department, KAMC NGHA, Riyadh 14413, Saudi Arabia.
| | - Dominik Wolf
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Wolfgang Willenbacher
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck 6020, Austria.
- Oncotyrol, Center for Personalized Cancer Therapy, Innsbruck 6020, Austria.
| | - Gilbert Spizzo
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck 6020, Austria.
- Oncologic Day Hospital, 39042 Bressanone, Italy.
| | - Andreas Seeber
- Department of Internal Medicine V: Hematology and Oncology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
10
|
Zhong L, Yang X, Zhu Y, Peng J, Cao Y. Radix Tetrastigma Hemsleyani Flavone Suppresses Cutaneous Squamous Cell Carcinoma A431 Cells via Proteasome Inhibition. Med Sci Monit 2019; 25:436-442. [PMID: 30643111 PMCID: PMC6342065 DOI: 10.12659/msm.913889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Radix Tetrastigma Hemsleyani Flavone (RTHF) has detoxification and anti-inflammation activity and is widely used. Here, we report that RTHF inhibits cell proliferation and induces apoptosis in cutaneous squamous cell carcinoma A431 cells and is a potential strategy for cancer therapy. Material/Methods A431 cells were cultured in different concentrations of RTHF. The inhibition of cell proliferation was assessed by MTT assay, cell apoptosis was shown through FCM, and cell invasion was assessed by Transwell methods. Enzyme proteasome assay was used to detect the activity of proteasome and DUB. Expression of apoptosis-related and ubiquitin proteasome pathway-associated proteins were assessed by PCR and Western blot. Results RTHF obviously suppressed the proliferation and induced apoptosis of A431 cells in a dose-dependent manner. Transwell assay showed that RTHF inhibited the cell metastasis significantly. Enzyme proteasome assay show that the RTHF treatment of activity of proteasome and DUB was significantly lower than in control. RTHF increased the expression of Bax and inhibited Bcl-2, pro-caspase3, and pro-caspase9 activity. The expression of USP14, UCHL5, and POH1 decreased and ub-prs increased significantly in the treatment group. Conclusions Our study reveals that RTHF-mediated inhibition of DUBs and proteasome may provide a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Liangrui Zhong
- Department of Dermatology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Xiaohong Yang
- Department of Dermatology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Yiping Zhu
- Department of Dermatology, The Third People's Hospital in Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Jianzhong Peng
- Department of Dermatology, The Third People's Hospital in Hangzhou Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Yi Cao
- Department of Dermatology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|