1
|
Park H. Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines. J Comput Biol 2024; 31:257-274. [PMID: 38394313 DOI: 10.1089/cmb.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (MAGE) family, Trefoil Factor (TFF) family, and Ras-Associated Binding 25 (RAB25), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (SAA) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
2
|
Hasebe K, Yamazaki K, Yamaguchi J, Kokuryo T, Yokoyama Y, Miyata K, Fukaya M, Nagino M, Ebata T. Trefoil factor 1 inhibits the development of esophageal adenocarcinoma from Barrett's epithelium. J Transl Med 2022; 102:885-895. [PMID: 35279702 DOI: 10.1038/s41374-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Trefoil factor family 1 (TFF1) is one of three members of the trefoil factor family that are abundantly expressed in the gastrointestinal mucosal epithelium. Recent studies have shown that TFF1 acts as a tumor suppressor in gastric, pancreatic and hepatocellular carcinogenesis; however, little is known about its function in esophageal carcinogenesis, especially in esophageal adenocarcinoma (EAC). Barrett's epithelium is the metaplastic columnar epithelium of the esophagus and a known premalignant lesion of EAC. To investigate the role of TFF1 in EAC development, a mouse model of Barrett's epithelium was employed, and human specimens of EAC were assessed by immunohistochemistry (IHC) and methylation-specific PCR. Wild-type (WT) mice underwent gastrojejunostomy on the forestomach, resulting in the development of Barrett's epithelium-like (BE-like) epithelium adjacent to the anastomotic site. BE-like epithelium in these mice expressed TFF1, indicating the association of TFF1 with esophageal adenocarcinoma. TFF1-knockout (TFF1KO) mice underwent the same procedure as well, revealing that a deficiency in TFF1 resulted in the development of adenocarcinoma in the anastomotic site, presumably from BE-like epithelium. IHC of human samples revealed strong TFF1 expression in Barrett's epithelium, which was lost in some EACs, confirming the association between TFF1 and EAC development. Aberrant DNA hypermethylation in TFF1 promoter lesions was detected in TFF1-negative human EAC samples, further confirming not only the role of TFF1 in EAC but also the underlying mechanisms of TFF1 regulation. In addition, IHC revealed the nuclear translocation of β-catenin in human and mouse EAC, suggesting that activation of the Wnt/β-catenin pathway was induced by the loss of TFF1. In conclusion, these results indicate that TFF1 functions as a tumor suppressor to inhibit the development of esophageal carcinogenesis from Barrett's epithelium.
Collapse
Affiliation(s)
- Keiji Hasebe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimitoshi Yamazaki
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Miyata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Fukaya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Qu H, Zong Q, Wang H, Wu S, Cai D, Bao W. C/EBPα Epigenetically Modulates TFF1 Expression via mC-6 Methylation in the Jejunum Inflammation Induced by a Porcine Coronavirus. Front Immunol 2022; 13:881289. [PMID: 35693767 PMCID: PMC9174463 DOI: 10.3389/fimmu.2022.881289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an emerging coronavirus which causes acute diarrhea and destroys gastrointestinal barrier function in neonatal pigs. Trefoil factor 1 (TFF1) is a protective peptide for maintaining the integrity of gastrointestinal mucosa and reducing intestinal inflammation. However, its role in protecting intestinal epithelium against PEDV infection is still unclear. In this study, we discovered that TFF1 expression was activated in the jejunum of pigs with PEDV infection and TFF1 is required for the growth of porcine intestinal epithelial cells. For instance, inhibited cell proliferation and cell arrest were observed when TFF1 is genetically knocked-out using CRISPR-Cas9. Additionally, TFF1 depletion increased viral copy number and PEDV titer, along with the elevated genes involved in antiviral and inflammatory cytokines. The decreased TFF1 mRNA expression is in line with hypermethylation on the gene promoter. Notably, the strong interactions of protein-DNA complexes containing CCAAT motif significantly increased C/EBPα accessibility, whereas hypermethylation of mC-6 loci decreased C/EBPα binding occupancies in TFF1 promoter. Overall, our findings show that PEDV triggers the C/EBPα-mediated epigenetic regulation of TFF1 in intestine epithelium and facilitates host resistance to PEDV and other Coronavirus infections.
Collapse
Affiliation(s)
- Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Immunoexpression of Trefoil Factor 1 in Non-Neoplastic and Neoplastic Canine Gastric Tissues. Animals (Basel) 2021; 11:ani11102855. [PMID: 34679875 PMCID: PMC8532865 DOI: 10.3390/ani11102855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Gastric carcinoma (GC) is the second leading cause of death in humans and the most frequent malignancy in the stomach of dogs. As in humans, the prognosis of canine gastric cancer is generally poor owing to the advanced stage at the time of diagnosis, resulting in limited treatment options. In dogs, the molecular mechanisms involved in the growth and progression of gastric cancer remain largely unknown. Trefoil factor 1 (TFF1) protein is a mucin-associated secretory molecule that plays an important role in the maintenance and protection of epithelial surface integrity. Some human studies showed that TFF1 can protect mucosa against damage and suppress carcinogenesis, while other studies showed that TFF1 can restrict cell adhesion, promote tumor cell invasion, and block necrosis of tumor cells. In human gastric cancer, TFF1 has been found to decrease, and it has been proposed that it might act as a tumor suppressor factor. The present study was carried out to investigate whether there is a relationship between TFF1 and canine gastric carcinogenesis. We found an association between reduced expression of TFF1 and the development and progression of gastric cancer in dogs. The pathological and behavioral similarities between spontaneous canine GC and human counterparts make it logical to assume that dogs may be a useful model for human gastric cancer. Abstract TFF1 expression is markedly reduced in human GCs, suggesting that TFF1 is a tumor suppressor for human gastric cancer. The present study evaluated the expression and distribution pattern of TFF1 in paraffin-embedded canine gastric tissue samples, including normal mucosa (n = 3), polyps (n = 8), carcinomas (n = 31) and their adjacent non-neoplastic mucosa (n = 30), neoplastic emboli (n = 14), and metastatic lesions (n = 9), by immunohistochemistry (IHC). All normal gastric tissues expressed TFF1 in the superficial foveolar epithelium and mucopeptic cells of the neck region. Most gastric polyps (GPs) displayed immunoreactivity for TFF1 in >75% of the epithelial component. In GCs, the expression of TFF1 was found reduced in 74.2% of the cases. The level of TFF1 expression had a decreased tendency from normal gastric mucosa to GPs and GCs (p < 0.05). No significant differences in the expression of TFF1 were found in GCs, according to age, sex, histological type based on World Health Organization (WHO) and Lauren classification, tumor location, depth of tumor invasion, presence of neoplastic emboli or metastatic lesions. The median survival time of GC patients with preserved and reduced TFF1 immunoexpression were 30 and 12 days, respectively. Kaplan–Meier analysis revealed no significant survival differences between the two groups (p > 0.05). These findings suggest that TFF1 protein may play a role in canine gastric carcinogenesis, and further studies are necessary to define its usefulness as a prognostic indicator in canine gastric carcinoma.
Collapse
|
5
|
Gastrokine 2 Regulates the Antitumor Effect of JAK2/STAT3 Pathway in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1343808. [PMID: 34381519 PMCID: PMC8352702 DOI: 10.1155/2021/1343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
GKN2 (gastrokine 2) mainly plays a regulatory role in gastric mucosal defense and cell protection mechanisms, and its role in gastric cancer has not been thoroughly elucidated. Immunohistochemistry was used to detect GKN2 and TFF1 expressions in 90 gastric cancer tissues, 48 neoplastic resection margins, and 22 normal gastric mucosa epithelia. It showed that the downregulation of GKN2 and TFF1 expressions in gastric cancer tissues was significantly different from that in adjacent normal gastric tissues and distal gastric mucosal tissues. Nevertheless, correlation analysis showed that GKN2 expression in gastric cancer tissues was independent of TFF1 expression. After overexpression of GKN2 was constructed in human gastric cancer cell line MKN28 with the Ad-GFP-GKN2 transfected, cell viability was measured by CCK-8 assay, and migration and invasion ability were analyzed by transwell migration assay and transwell invasion assay. It indicated that overexpression of GKN2 significantly reduced the viability of MKN28 and SGC7901 cells. Overexpression of GKN2 could also inhibit the migration and invasion ability in MKN28 and SGC7901 cells. In addition, upregulation of GKN2 can inactivate the JAK2/STAT3 pathway. Our data suggest that GKN2 and TFF1 play the antitumor role in gastric carcinoma, and TFF1 may not interact or cooperate with GKN2. GKN2 overexpression can inhibit the growth and metastasis by downregulating the JAK2/STAT3 pathway in gastric cancer cells.
Collapse
|
6
|
Monroe JD, Moolani SA, Irihamye EN, Speed JS, Gibert Y, Smith ME. RNA-Seq Analysis of Cisplatin and the Monofunctional Platinum(II) Complex, Phenanthriplatin, in A549 Non-Small Cell Lung Cancer and IMR90 Lung Fibroblast Cell Lines. Cells 2020; 9:cells9122637. [PMID: 33302475 PMCID: PMC7764052 DOI: 10.3390/cells9122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Phenanthriplatin is a new monofunctional platinum(II) complex that binds only one strand of DNA and acts by blocking gene transcription, but its effect on gene regulation has not been characterized relative to the traditional platinum-based complex, cisplatin. A549 non-small cell lung cancer and IMR90 lung fibroblast cells were treated with cisplatin, phenanthriplatin, or a control and then their RNA transcripts were subjected to next generation sequencing analysis. DESeq2 and CuffDiff2 were used to identify up- and downregulated genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to identify pathways and functions. We found that phenanthriplatin may regulate the genes GPRC5a, TFF1, and TNFRSF10D, which act through p53 to control apoptosis, differently or to a greater extent than cisplatin, and that it, unlike cisplatin, could upregulate ATP5MD, a gene which signals through the Wnt/β catenin pathway. Furthermore, phenanthriplatin caused unique or enhanced effects compared to cisplatin on genes regulating the cytoskeleton, cell migration, and proliferation, e.g., AGAP1, DIAPH2, GDF15, and THSD1 (p < 0.05; q < 0.05). Phenanthriplatin may modulate some oncogenes differently than cisplatin potentially leading to improved clinical outcome, but this monofunctional complex should be carefully matched with cancer gene data to be successfully applied in chemotherapy.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.D.M.); (Y.G.)
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA; (S.A.M.); (E.N.I.)
| | - Satya A. Moolani
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA; (S.A.M.); (E.N.I.)
- Program in Cognitive Science, Case Western Reserve University, Cleveland, OH 44106-7063, USA
| | - Elvin N. Irihamye
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA; (S.A.M.); (E.N.I.)
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405-2204, USA
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.D.M.); (Y.G.)
| | - Michael E. Smith
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA; (S.A.M.); (E.N.I.)
- Correspondence:
| |
Collapse
|
7
|
Ochiai Y, Yamaguchi J, Kokuryo T, Yokoyama Y, Ebata T, Nagino M. Trefoil Factor Family 1 Inhibits the Development of Hepatocellular Carcinoma by Regulating β-Catenin Activation. Hepatology 2020; 72:503-517. [PMID: 31733149 DOI: 10.1002/hep.31039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Recent studies have suggested that trefoil factor family 1 (TFF1) functions as a tumor suppressor in gastric and pancreatic carcinogenesis. APPROACH AND RESULTS To investigate the role of TFF1 in hepatocarcinogenesis, we performed immunohistochemical staining of surgically resected human liver samples, transfected a TFF1 expression vector into hepatocellular carcinoma (HCC) cell lines, and employed a mouse model of spontaneous HCC development (albumin-cyclization recombination/Lox-Stop-Lox sequence-Kirsten rat sarcoma viral oncogene homologG12D [KC]); the model mouse strain was bred with a TFF1-knockout mouse strain to generate a TFF1-deficient HCC mouse model (KC/TFF1-/- ). TFF1 expression was found in some human samples with HCC. Interestingly, TFF1-positive cancer cells showed a staining pattern contradictory to that of proliferating cell nuclear antigen, and aberrant DNA hypermethylation in TFF1 promoter lesions was detected in HCC samples, indicating the tumor-suppressive role of TFF1. In vitro, induction of TFF1 expression resulted in impaired proliferative activity and enhanced apoptosis in HCC cell lines (HuH7, HepG2, and HLE). These anticancer effects of TFF1 were accompanied by the loss of nuclear β-catenin expression, indicating inactivation of the β-catenin signaling pathway by TFF1. In vivo, TFF1 deficiency in KC mice accelerated the early development and growth of HCC, resulting in poor survival rates. In addition, immunohistochemistry revealed that the amount of nuclear-localized β-catenin was significantly higher in KC/TFF1-/- mice than in KC mice and that human HCC tissue showed contradictory expression patterns for β-catenin and TFF1, confirming the in vitro observations. CONCLUSIONS TFF1 might function as a tumor suppressor that inhibits the development of HCC by regulating β-catenin activity.
Collapse
Affiliation(s)
- Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Ye G, Yang Q, Lei X, Zhu X, Li F, He J, Chen H, Ling R, Zhang H, Lin T, Liang Z, Liang Y, Huang H, Guo W, Deng H, Liu H, Hu Y, Yu J, Li G. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics 2020; 10:7545-7560. [PMID: 32685004 PMCID: PMC7359096 DOI: 10.7150/thno.46001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022] Open
Abstract
Rationale: Peritoneal metastasis predicts poor prognosis of gastric cancer (GC) patients, and the underlying mechanisms are poorly understood. Methods: The 2-DIGE, MALDI-TOF/TOF MS and single-cell transcriptome were used to detect differentially expressed proteins among normal gastric mucosa, primary GC and peritoneal metastatic tissues. Lentiviruses carrying shRNA and transcription activator-like effector nuclease technology were used to knock down myosin heavy chain 9 (MYH9) expression in GC cell lines. Immunofluorescence, immune transmission electron microscopy, chromatin fractionation, co-immunoprecipitation, and assays for chromatin immunoprecipitation, dual luciferase reporter, agarose-oligonucleotide pull-down, flow cytometry and cell anoikis were performed to uncover nuclear MYH9-induced β-catenin (CTNNB1) transcription in vitro. Nude mice and conditional transgenic mice were used to investigate the findings in vivo. Results: We observed that MYH9 was upregulated in metastatic GC tissues and was associated with a poor prognosis of GC patients. Mechanistically, we confirmed that MYH9 was mainly localized in the GC cell nuclei by four potential nuclear localization signals. Nuclear MYH9 bound to the CTNNB1 promoter through its DNA-binding domain, and interacted with myosin light chain 9, β-actin and RNA polymerase II to promote CTNNB1 transcription, which conferred resistance to anoikis in GC cells in vitro and in vivo. Staurosporine reduced nuclear MYH9 S1943 phosphorylation to inhibit CTNNB1 transcription, Wnt/β-catenin signaling activation and GC progression in both orthotropic xenograft GC nude mouse and transgenic GC mouse models. Conclusion: This study identified that nuclear MYH9-induced CTNNB1 expression promotes GC metastasis, which could be inhibited by staurosporine, indicating a novel therapy for GC peritoneal metastasis.
Collapse
Affiliation(s)
- Gengtai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Qingbin Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Xuetao Lei
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Xianjun Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Present address: Department of General Surgery, Panyu Central Hospital, Guangzhou, Guangdong 511400, China
| | - Fengping Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Jiayong He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Ruoyu Ling
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Haisheng Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Zhiping Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Haipeng Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Soutto M, Chen Z, Bhat AA, Wang L, Zhu S, Gomaa A, Bates A, Bhat NS, Peng D, Belkhiri A, Piazuelo MB, Washington MK, Steven XC, Peek R, El-Rifai W. Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat Commun 2019; 10:3039. [PMID: 31292446 PMCID: PMC6620282 DOI: 10.1038/s41467-019-11011-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
TFF1, a secreted protein, plays an essential role in keeping the integrity of gastric mucosa and its barrier function. Loss of TFF1 expression in the TFF1-knockout (KO) mouse leads to a pro-inflammatory phenotype with a cascade of gastric lesions that include low-grade dysplasia, high-grade dysplasia, and adenocarcinomas. In this study, we demonstrate nuclear localization of p-STATY705, with significant overexpression of several STAT3 target genes in gastric glands from the TFF1-KO mice. We also show frequent loss of TFF1 with nuclear localization of STAT3 in human gastric cancers. The reconstitution of TFF1 protein in human gastric cancer cells and 3D gastric glands organoids from TFF1-KO mice abrogates IL6-induced nuclear p-STAT3Y705 expression. Reconstitution of TFF1 inhibits IL6-induced STAT3 transcription activity, suppressing expression of its target genes. TFF1 blocks IL6Rα-GP130 complex formation through interfering with binding of IL6 to its receptor IL6Rα. These findings demonstrate a functional role of TFF1 in suppressing gastric tumorigenesis by impeding the IL6-STAT3 pro-inflammatory signaling axis. Trefoil factor 1 (TFF1) is a protein secreted by the gastric mucosa that protects against gastric tumourigenesis. Here, the authors show that TFF1 inhibits the oncogenic inflammatory response and IL-6-mediated STAT3 activation by interfering with the binding of IL6 to its receptor IL6Rα.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zheng Chen
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ajaz A Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Lihong Wang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmed Gomaa
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreia Bates
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nadeem S Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xi Chen Steven
- Department of Public Health Sciences, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA. .,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
11
|
Omar OM, Soutto M, Bhat NS, Bhat AA, Lu H, Chen Z, El-Rifai W. TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer. Mol Carcinog 2018; 57:1577-1587. [PMID: 30035371 DOI: 10.1002/mc.22880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR, we detected significant overexpression of TIMP1 in the human gastric cancer samples, as compared to normal stomach samples (P < 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice, as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P < 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-α and activation of NF-κB whereas inhibition of NF-κB using BAY11-7082 led to inhibition of NF-κB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence, we showed nuclear localization of NF-κB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-κB and TIMP1. Using EDU assay, as a measure of proliferating cells, we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P < 0.05). In summary, our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-κB and inhibits TIMP1-mediated proliferative potential in gastric cancer.
Collapse
Affiliation(s)
- Omar M Omar
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem S Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ajaz A Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha
| | - Heng Lu
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Zheng Chen
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Yamaguchi J, Yokoyama Y, Kokuryo T, Ebata T, Enomoto A, Nagino M. Trefoil factor 1 inhibits epithelial-mesenchymal transition of pancreatic intraepithelial neoplasm. J Clin Invest 2018; 128:3619-3629. [PMID: 29809170 DOI: 10.1172/jci97755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/24/2018] [Indexed: 12/30/2022] Open
Abstract
The tumor-suppressive role of trefoil factor family (TFF) members in gastric carcinogenesis has been suggested, but their significance and mechanisms in other digestive diseases remain elusive. To clarify the role of TFF1 in pancreatic carcinogenesis, we performed IHC on human samples, transfected siRNA against TFF1 into pancreatic cancer cell lines, and employed mouse models in which PanIN development and loss of TFF1 occur simultaneously. In human samples, the expression of TFF1 was specifically observed in pancreatic intraepithelial neoplasm (PanIN), but was frequently lost in the invasive component of pancreatic ductal adenocarcinoma (PDAC). When the expression of TFF1 was suppressed in vitro, pancreatic cancer cell lines showed enhanced invasive ability and features of epithelial-mesenchymal transition (EMT), including upregulated Snail expression. TFF1 expression was also observed in PanIN lesions of Pdx-1 Cre; LSL-KRASG12D (KC) mice, a model of pancreatic cancer, and loss of TFF1 in these mice resulted in the expansion of PanIN lesions, an EMT phenotype in PanIN cells, and an accumulation of cancer-associated fibroblasts (CAFs), eventually resulting in the development of invasive adenocarcinoma. This study indicates that the acquisition of TFF1 expression is an early event in pancreatic carcinogenesis and that TFF1 might act as a tumor suppressor to prevent EMT and the invasive transformation of PanIN.
Collapse
Affiliation(s)
| | | | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, and
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, and
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, and
| |
Collapse
|
13
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
14
|
Gonzaga IM, Soares Lima SC, Nicolau MC, Nicolau-Neto P, da Costa NM, de Almeida Simão T, Hernandez-Vargas H, Herceg Z, Ribeiro Pinto LF. TFF1 hypermethylation and decreased expression in esophageal squamous cell carcinoma and histologically normal tumor surrounding esophageal cells. Clin Epigenetics 2017; 9:130. [PMID: 29296124 PMCID: PMC5738900 DOI: 10.1186/s13148-017-0429-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the 10 most incident cancer types in the world, and it is mainly associated with tobacco and alcohol consumption. ESCC mortality rates stand very close to its incidence, which is a direct consequence of a late diagnosis and an inefficient treatment. Although this scenery is quite alarming, the major molecular alterations that drive this carcinogenesis process remain unclear. We have previously shown through the first ESCC methylome analysis that TFF1 promoter is frequently hypermethylated in ESCC. Here, to evaluate TFF1 methylation as a potential biomarker of early ESCC diagnosis, we investigated the status of TFF1 promoter methylation and its expression in ESSC and histologically normal tumor surrounding tissue of ESCC patients in comparison to healthy esophagus of non-cancer individuals. Results Analysis of TFF1 promoter methylation, and gene and protein expression in 65 ESCC patients and 88 controls revealed that TFF1 methylation levels were already increased in histologically normal tumor surrounding tissue of ESCC patients when compared to healthy esophagus of non-cancer individuals. This increase in DNA methylation was followed by the reduction of TFF1 mRNA expression. Interestingly, TFF1 expression was capable of distinguishing tumor surrounding normal tissue from normal mucosa of healthy individuals with 92% accuracy. In addition, TFF1 protein was undetectable both in tumor and surrounding mucosa by immunohistochemistry, while submucosa glands of the healthy esophagus showed positive staining. Furthermore, treatment of TE-1 and TE-13 ESCC cell lines with decitabine led to a reduction of promoter methylation and consequent upregulation of TFF1 gene and protein expression. Finally, using TCGA data we showed that TFF1 loss is observed in ESCC, but not in esophageal adenocarcinoma, highlighting the different molecular mechanisms involved in the development of each histological subtype of esophageal cancer. Conclusions This study shows that TFF1 expression is silenced in early phases of ESCC development, which seems to be mediated at least in part by promoter hypermethylation, and provides the basis for the use of TFF1 expression as a potential biomarker for early ESCC detection.
Collapse
Affiliation(s)
- Isabela Martins Gonzaga
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Sheila Coelho Soares Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Marina Chianello Nicolau
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Nathalia Meireles da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro, CEP: 20551-013 Brazil
| | - Hector Hernandez-Vargas
- Epigenetics Group, Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, CEDEX 08 Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, CEDEX 08 Lyon, France
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro, CEP: 20551-013 Brazil
| |
Collapse
|
15
|
Roost MS, Slieker RC, Bialecka M, van Iperen L, Gomes Fernandes MM, He N, Suchiman HED, Szuhai K, Carlotti F, de Koning EJP, Mummery CL, Heijmans BT, Chuva de Sousa Lopes SM. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nat Commun 2017; 8:908. [PMID: 29030611 PMCID: PMC5640655 DOI: 10.1038/s41467-017-01077-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/16/2017] [Indexed: 01/05/2023] Open
Abstract
Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal development. Analysis of multiple isogenic organ sets shows that organ-specific DNA methylation patterns are highly dynamic between week 9 (W9) and W22 of gestation. We investigate the impact of reprogramming on organ-specific DNA methylation by generating human induced pluripotent stem cell (hiPSC) lines from six isogenic organs. All isogenic hiPSCs acquire DNA methylation patterns comparable to existing hPSCs. However, hiPSCs derived from fetal brain retain brain-specific DNA methylation marks that seem sufficient to confer higher propensity to differentiate to neural derivatives. This systematic analysis of human fetal organs during development and associated isogenic hiPSC lines provides insights in the role of DNA methylation in lineage commitment and epigenetic reprogramming in humans.While DNA methylation and gene expression data are widely available for animal models, comprehensive data from human development is rarer. Here, the authors generated transcriptional and DNA methylation data from 21 organs during human development and 6 isogenic induced pluripotent stem cell lines.
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Maria M Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - H Eka D Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands. .,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Rivas-Ortiz CI, Lopez-Vidal Y, Arredondo-Hernandez LJR, Castillo-Rojas G. Genetic Alterations in Gastric Cancer Associated with Helicobacter pylori Infection. Front Med (Lausanne) 2017; 4:47. [PMID: 28512631 PMCID: PMC5411440 DOI: 10.3389/fmed.2017.00047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a world health problem and depicts the fourth leading mortality cause from malignancy in Mexico. Causation of gastric cancer is not only due to the combined effects of environmental factors and genetic variants. Recent molecular studies have transgressed a number of genes involved in gastric carcinogenesis. The aim of this review is to understand the recent basics of gene expression in the development of the process of gastric carcinogenesis. Genetic variants, polymorphisms, desoxyribonucleic acid methylation, and genes involved in mediating inflammation have been associated with the development of gastric carcinogenesis. Recently, these genes (interleukin 10, Il-17, mucin 1, β-catenin, CDX1, SMAD4, SERPINE1, hypoxia-inducible factor 1 subunit alpha, GSK3β, CDH17, matrix metalloproteinase 7, RUNX3, RASSF1A, TFF1, HAI-2, and COX-2) have been studied in association with oncogenic activation or inactivation of tumor suppressor genes. All these mechanisms have been investigated to elucidate the process of gastric carcinogenesis, as well as their potential use as biomarkers and/or molecular targets to treatment of disease.
Collapse
Affiliation(s)
- Claudia I. Rivas-Ortiz
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Yolanda Lopez-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Gonzalo Castillo-Rojas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Gonzalo Castillo-Rojas,
| |
Collapse
|
17
|
Khaidakov M, Lai KK, Roudachevski D, Sargsyan J, Goyne HE, Pai RK, Lamps LW, Hagedorn CH. Gastric Proteins MUC5AC and TFF1 as Potential Diagnostic Markers of Colonic Sessile Serrated Adenomas/Polyps. Am J Clin Pathol 2016; 146:530-537. [PMID: 28430953 PMCID: PMC5377921 DOI: 10.1093/ajcp/aqw142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES A subset of colon cancers originates from sessile serrated adenomas/polyps (SSA/Ps). Our goal was to identify markers for SSA/Ps that could aid in distinguishing them from hyperplastic polyps (HPs). METHODS We performed immunostaining for gastric proteins MUC5AC and TFF1 in formalin-fixed, paraffin-embedded (FFPE) samples of HPs (n = 47), SSA/Ps (n = 37), and normal colon (n = 30). RESULTS Control mucosa expressed only trace amounts of MUC5AC and TFF1. HPs exhibited an 11.3- and 11.4-fold increase in MUC5AC and TFF1 expression confined to the upper segments of the crypts near the luminal surface of the polyps. SSA/Ps displayed on average 1.6-fold (MUC5AC, P < .008) and 1.4-fold (TFF1, P < .03) higher signal intensity for these markers than HPs, with a dramatic coexpression of MUC5AC and TFF1 typically occupying the entire length of the crypt. Immunoperoxidase results were similar to immunofluorescence staining for both MUC5AC and TFF1. CONCLUSIONS Our results suggest that the analysis of expression of MUC5AC and TFF1 may be useful for differentiating SSA/Ps from HPs. We also suggest the possibility that crypt morphology may be at least partly due to overproduction of highly viscous gastric mucins and that these proteins may play a role in the serrated pathway to colon carcinogenesis.
Collapse
Affiliation(s)
- Magomed Khaidakov
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| | - Keith K. Lai
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | | | | | - Hannah E. Goyne
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Rish K. Pai
- Department of Pathology, Mayo Clinic, Scottsdale, AZ
| | - Laura W. Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Curt H. Hagedorn
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| |
Collapse
|
18
|
Busch M, Dünker N. Trefoil factor family peptides – friends or foes? Biomol Concepts 2015; 6:343-59. [DOI: 10.1515/bmc-2015-0020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
Abstract
AbstractTrefoil factor family (TFF) peptides are a group of molecules bearing a characteristic three-loop trefoil domain. They are mainly secreted in mucous epithelia together with mucins but are also synthesized in the nervous system. For many years, TFF peptides were only known for their wound healing and protective function, e.g. in epithelial protection and restitution. However, experimental evidence has emerged supporting a pivotal role of TFF peptides in oncogenic transformation, tumorigenesis and metastasis. Deregulated expression of TFF peptides at the gene and protein level is obviously implicated in numerous cancers, and opposing functions as oncogenes and tumor suppressors have been described. With regard to the regulation of TFF expression, epigenetic mechanisms as well as the involvement of various miRNAs are new, promising aspects in the field of cancer research. This review will summarize current knowledge about the expression and regulation of TFF peptides and the involvement of TFF peptides in tumor biology and cancerogenesis.
Collapse
Affiliation(s)
- Maike Busch
- 1Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Nicole Dünker
- 1Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany
| |
Collapse
|
19
|
Kanda M, Kodera Y. Recent advances in the molecular diagnostics of gastric cancer. World J Gastroenterol 2015; 21:9838-9852. [PMID: 26379391 PMCID: PMC4566379 DOI: 10.3748/wjg.v21.i34.9838] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined.
Collapse
|
20
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
21
|
Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta 2015; 448:124-32. [PMID: 26148722 DOI: 10.1016/j.cca.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Although gastric cancer (GC) is highly prevalent in China and is a leading cause of cancer-related death, major advances in early diagnostic and effective therapeutic strategies have not been made. GC patients are usually diagnosed at an advanced stage and the prognosis is still poor. Over the years, many efforts have been done on exploring the pathology of GC. In particular, genome-wide analysis tools have been widely used in the detection of genetic and epigenetic alterations in GC. For example, many tumor suppressor genes have been found to be aberrantly hypermethylated in GCs, and some even in gastric precancerous lesions, suggesting a role of this molecular event in early gastric tumorigenesis. In addition, accumulating evidences have demonstrated that some hypermethylated genes can be used as potential biomarkers for detection and diagnosis of GC in biopsy specimens and non-invasive body fluids. These exciting advances provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for GC. Here, we reviewed recent findings on the promoter hypermethylation of tumor suppressor genes in GC and aimed to provide better understanding of the contribution of this epigenetic event to gastric tumorigenesis.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junrong Liang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
22
|
Soutto M, Chen Z, Saleh MA, Katsha A, Zhu S, Zaika A, Belkhiri A, El-Rifai W. TFF1 activates p53 through down-regulation of miR-504 in gastric cancer. Oncotarget 2015; 5:5663-73. [PMID: 25015107 PMCID: PMC4170596 DOI: 10.18632/oncotarget.2156] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The expression of TFF1 is frequently down-regulated in human gastric cancer whereas its knockout leads to the development of gastric adenomas and carcinomas in mouse models. The molecular mechanisms underlying the TFF1 tumor suppressor functions remain unclear. In this study, we demonstrate, using colony formation assay and Annexin V staining, that reconstitution of TFF1 expression in gastric cancer cell models suppresses cell growth and promotes cell death. Furthermore, using a tumor xenograft mouse model of gastric cancer, we demonstrated that reconstitution of TFF1 suppresses tumor growth in vivo. The results from PG13-luciferase reporter assay and Western blot analysis indicated that TFF1 promotes the expression and transcription activity of the p53 protein. Further analysis using cycloheximide-based protein assay and quantitative real-time PCR data suggested that TFF1 does not interfere with p53 mRNA levels or protein stability. Alternatively, we found that the reconstitution of TFF1 down-regulates miR-504, a negative regulator of p53. Western blot analysis data demonstrated that miR-504 abrogates TFF1-induced p53 protein expression and activity. In conclusion, the in vitro and in vivo data demonstrate, for the first time, a novel mechanism by which the tumor suppressor functions of TFF1 involve activation of p53 through down-regulation of miR-504.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohamed A Saleh
- Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ahmed Katsha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Zaika
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One 2014; 9:e106780. [PMID: 25198154 PMCID: PMC4157799 DOI: 10.1371/journal.pone.0106780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Collapse
|