1
|
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, Qiang H, Zhao Z, Zhang X, Sun D. Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis 2025; 16:2. [PMID: 39755713 DOI: 10.1038/s41419-024-07322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics. This study aimed to investigate the impact of Rnd3 (a Rho family GTPase 3) on DIC, with a focus on mitochondrial dynamics. Cardiomyocyte-specific Rnd3 transgenic mice (Rnd3-Tg) and Rnd3LSP/LSP mice (N-Tg) were established for in vivo experiments, and adenoviruses harboring Rnd3 (Ad-Rnd3) or negative control (Ad-Control) were injected in the myocardium for in vitro experiments. The DIC model was established using wild-type, N-Tg, and Rnd3-Tg mice, with subsequent intraperitoneal injection of Dox for 4 weeks. The molecular mechanism was explored through RNA sequencing, immunofluorescence staining, co-immunoprecipitation assay, and protein-protein docking. Dox administration induced significant mitochondrial injury and cardiac dysfunction, which was ameliorated by Rnd3 overexpression. Further, the augmentation of Rnd3 expression mitigated mitochondrial fragmentation which is mediated by dynamin-related protein 1 (Drp1), thereby ameliorating the PANoptosis (pyroptosis, apoptosis, and necroptosis) response induced by Dox. Mechanically, the interaction between Rnd3 and Rho-associated kinase 1 (Rock1) may impede Rock1-induced Drp1 phosphorylation at Ser616, thus inhibiting mitochondrial fission and dysfunction. Interestingly, Rock1 knockdown nullified the effects of Rnd3 on cardiomyocytes PANoptosis, as well as Dox-induced cardiac remodeling and dysfunction elicited by Rnd3. Rnd3 enhances cardiac resilience against DIC by stabilizing mitochondrial dynamics and reducing PANoptosis. Our findings suggest that the Rnd3/Rock1/Drp1 signaling pathway represents a novel target for mitigating DIC, and modulating Rnd3 expression could be a strategic approach to safeguarding cardiac function in patients undergoing Dox treatment. The graphical abstract illustrated the cardioprotective role of Rnd3 in DIC. Rnd3 directly binds to Rock1 in cytoplasm and ameliorates mitochondrial fission by inhibiting Drp1 phosphorylation at ser616, thereby alleviating PANoptosis (apoptosis, pyroptosis, and necroptosis) in DIC.
Collapse
Affiliation(s)
- Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Duan L, Liang C, Li X, Huang Z, Liu S, Wu N, Jia D. Lycopene restores the effect of ischemic postconditioning on myocardial ischemia‑reperfusion injury in hypercholesterolemic rats. Int J Mol Med 2019; 43:2451-2461. [PMID: 31017253 PMCID: PMC6488174 DOI: 10.3892/ijmm.2019.4166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/10/2019] [Indexed: 12/02/2022] Open
Abstract
Ischemic postconditioning (IPoC) has been demonstrated to prevent myocardial ischemia-reperfusion injury (MIRI), but its cardioprotective effect is abrogated by hypercholesterolemia. The aim of the present study was to determine whether lycopene (LP), a type of carotenoid, can restore the cardioprotective effect of IPoC in hypercholesterolemic rats. Male Wistar rats were fed a cholesterol-enriched diet for 12 weeks to establish a hypercholesterolemic model. The rat hearts were isolated and subjected to 30 min ischemia and 60 min reperfusion using a Langendorff apparatus. LP was administered to the rats intraperitoneally for 5 consecutive days prior to ischemia and reperfusion. Myocardial pathological changes, infarct size and cell apoptosis were measured by hematoxylin and eosin, triphenyltetrazolium chloride and TUNEL staining, respectively. The changes in endoplasmic reticulum (ER) stress markers, the reperfusion injury salvage kinase (RISK) pathway and mitochondrial apoptosis-related proteins were detected by western blotting. Overall, the results demonstrated that low-dose LP in combination with IPoC ameliorated myocardial histopathological changes, reduced the infarct size and release of cardiac enzymes, and decreased cardiomyocyte apoptosis in hypercholesterolemic rats, but no beneficial effects were achieved by the same dose of LP or IPoC treatment were used alone. Furthermore, the combination of LP and IPoC inhibited the expression of glucose-regulated protein 78 and C/EBP homologous protein, increased the phosphorylation levels of AKT, ERK1/2 and glycogen synthase kinase-3β, repressed mitochondrial permeability transition pore opening, and reduced the expression of cytochrome c, cleaved caspase-9 and cleaved caspase-3. Collectively, these findings demonstrated that LP can restore the cardioprotective effects of IPoC on MIRI in hypercholesterolemic rats, and this restoration by LP was mediated by inhibition of ER stress and reactivation of the RISK pathway in hypercholesterolemic rat myocardium.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Changbin Liang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuying Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zijun Huang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Huang YY, Wu JM, Su T, Zhang SY, Lin XJ. Fasudil, a Rho-Kinase Inhibitor, Exerts Cardioprotective Function in Animal Models of Myocardial Ischemia/Reperfusion Injury: A Meta-Analysis and Review of Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2018; 9:1083. [PMID: 30327600 PMCID: PMC6174418 DOI: 10.3389/fphar.2018.01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Fasudil, a Rho-kinase inhibitor, has shown outstanding therapeutic effects against cerebral vasospasm after subarachnoid hemorrhage (SAH) in humans. Studies show various biological effects of fasudil in the cardiovascular system. We conducted a preclinical systematic review to determine the efficacy and possible mechanisms of fasudil on animal models of myocardial ischemia/reperfusion (I/R) injury. Nineteen studies involving 400 animals were identified after searching 8 databases for articles published till June 2018. The methodological quality was assessed by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 10-item checklist. The data were analyzed using Rev-Man 5.3 software, and the score of study quality ranged from 3 to 6 points. Compared to the control group, fasudil treated animals showed reduced myocardial infarct size (P < 0.05), lower levels of cardiac enzymes (P < 0.05) and cardiac troponin T (P < 0.05), improved systolic and diastolic functions (P < 0.05), and increased degree of decline in the ST-segment (P < 0.05). The possible mechanisms of fasudil action against myocardial I/R injury are improvement in coronary vasodilation, inhibition of apoptosis and oxidative stress, relieving inflammation, and reduction in endoplasmic reticulum stress and metabolism. In conclusion, fasudil exerts a cardio-protective function through multiple signaling pathways in animal models of myocardial I/R injury.
Collapse
Affiliation(s)
- Yue-Yue Huang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Ming Wu
- Department of Dermatovenereology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Su
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song-Yue Zhang
- Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ji Lin
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P. Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2017; 174:1555-1569. [PMID: 28060997 DOI: 10.1111/bph.13704] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
Hypercholesterolaemia is considered to be a principle risk factor for cardiovascular disease, having direct negative effects on the myocardium itself, in addition to the development of atherosclerosis. Since hypercholesterolaemia affects the global cardiac gene expression profile, among many other factors, it results in increased myocardial oxidative stress, mitochondrial dysfunction and inflammation triggered apoptosis, all of which may account for myocardial dysfunction and increased susceptibility of the myocardium to infarction. In addition, numerous experimental and clinical studies have revealed that hyperlcholesterolaemia may interfere with the cardioprotective potential of conditioning mechanisms. Although not fully elucidated, the underlying mechanisms for the lost cardioprotection in hypercholesterolaemic animals have been reported to involve dysregulation of the endothelial NOS-cGMP, reperfusion injury salvage kinase, peroxynitrite-MMP2 signalling pathways, modulation of ATP-sensitive potassium channels and apoptotic pathways. In this review article, we summarize the current knowledge on the effect of hypercholesterolaemia on the non-ischaemic and ischaemic heart as well as on the cardioprotection induced by drugs or ischaemic preconditioning, postconditioning and remote conditioning. Future perspectives concerning the mechanisms and the design of preclinical and clinical trials are highlighted. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3863726. [PMID: 26788247 PMCID: PMC4691632 DOI: 10.1155/2016/3863726] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia.
Collapse
|
6
|
Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep 2015; 12:3315-3322. [PMID: 25997826 PMCID: PMC4526036 DOI: 10.3892/mmr.2015.3800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/24/2015] [Indexed: 01/26/2023] Open
Abstract
Micro-angiogenesis in the arterial wall has been observed during the development and progression of atherosclerosis. The aim of the present study was to examine whether inflammation, oxidative stress and hypoxia are involved in the process of early atherosclerotic micro-angiogenesis. A total of 24 rabbits were randomly divided into a normal diet group or a high-cholesterol (HC) diet group and were fed the corresponding diets for 4 weeks. The microvessel density (MVD), level of hypoxia and the levels of inflammatory markers and antioxidants in the arterial wall were detected using immunohistochemical and molecular biological techniques, respectively. The present results demonstrated that the MVD in the HC group was significantly higher (P<0.01) than that observed in the rabbits, which were provided with a normal diet, while hypoxia-inducible factor-1α levels did not exhibit marked changes in either of the two groups (P>0.05). The levels of inflammatory markers and antioxidants were significantly different between the two groups (P<0.05). The present study demonstrated that the primary factors, which promote micro-angiogenesis are possibly associated with an increase in inflammation and a decrease in the levels of antioxidants, as tissue hypoxia in the arterial wall at this stage was not evident.
Collapse
|