1
|
Peña ME, Angeramo CA, Schlottmann F, Sadava EE. Losartan modifies mesh integration after abdominal wall repair: an experimental study. Hernia 2022; 26:937-944. [PMID: 34138370 DOI: 10.1007/s10029-021-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Angiotensin II (AT II) receptor blockers have previously shown to reduce inflammatory response in many settings. We aimed to assess the effects of ATII receptor blocker (Losartan) on mesh integration after abdominal wall repair in a rat model. METHODS A total of 16 Wistar-Kyoto (WKY) and 16 previously hypertensive (SHRSP) rats were isolated. An acute ventral hernia followed by a bridged repair with heavyweight polypropylene mesh was performed. Subjects received either normal saline (WKY-C n = 8 and SHRPS-C n = 8) or 40 mg/kg losartan (WKY-L n = 8) and SHRPS-L n = 8) in the postoperative period. Blood pressure was recorded preoperatively and weekly after surgery. Necropsy with en-bloc resection of the abdominal wall was performed at postoperative day 30. Macroscopic and microscopic evaluations of the specimens were conducted. H&E and Masson's trichrome were used for histologic evaluation. RESULTS Both groups receiving Losartan showed a significant reduction of blood pressure after surgery (WKY-L: 130/85 vs 116/81 mmHg, SHRPS-L: 176/137 vs 122/101 mmHg, p < 0.01). A significant reduction in mesh incorporation and adherence scores were also observed on macroscopic analysis in Losartan groups (p < 0.01 and p = 0.02, respectively). Microscopically, higher immature fibroplasia was observed after Losartan, with a significant reduction in scar plate formation and inflammatory response on the prosthetic surface (p = 0.04 and p = 0.02, respectively). CONCLUSION Losartan modifies the interaction between the host tissue and the prosthesis. An impairment in mesh integration and immature fibroplasia in both normotensive and hypertensive rats detected in our model warrants further research.
Collapse
Affiliation(s)
- M E Peña
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - C A Angeramo
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - F Schlottmann
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - E E Sadava
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina.
- Division of Abdominal Wall Surgery, Department of Surgery, Hospital Alemán of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
3
|
Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad. Biomed Pharmacother 2022; 149:112931. [PMID: 36068784 DOI: 10.1016/j.biopha.2022.112931] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
The genesis and development of renal fibrosis involve a variety of pathways closely related to inflammation, cytokines, oxidative stress and metabolic abnormalities. Renal fibrosis is the result of a complex combination of a variety of lesions. Epithelial-mesenchymal transdifferentiation (EMT) of renal tubular epithelial cells is considered the key to renal fibrosis. Losartan is a typical Angiotensin II (ANG II) receptor antagonist and relaxes blood vessels. In this study, we investigated the effects of losartan on Unilateral Ureteral Obstruction (UUO) model mice by studying the changes in the TGF-β/Smad and metabolomics. Male C57BL/6 J mice were intervened with the UUO model and given losartan (10, 20, 30 mg/kg/d) for 28 consecutive days. The results showed that losartan could reduce UUO-induced abnormal serum metabolic spectrum and renal function. It could also improve renal tubular-interstitial injury and fibrosis by reducing tubulointerstitial dilation and collagen deposition. In addition, losartan promoted the expression of Smurf2 and Smurf1, i.e., Smad7 and E3 ubiquitin-linked enzymes, in the nucleus to degrade the type I receptor of TGF-β1 (TβR-I) and P-Smad2/3 to inhibit renal tubular epithelial cells EMT. In summary, these findings indicated that losartan could regulate the TGF-β/Smad and metabolic pathway in UUO model mice through ubiquitination to reduce renal fibrosis.
Collapse
|
4
|
Maekawa M, Maekawa T, Sasase T, Takagi K, Takeuchi S, Kitamoto M, Nakagawa T, Toyoda K, Konishi N, Ohta T, Yamada T. Pathophysiological Analysis of Uninephrectomized db/db Mice as a Model of Severe Diabetic Kidney Disease. Physiol Res 2022; 71:209-217. [DOI: 10.33549/physiolres.934784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diabetic nephropathy, included in diabetic kidney disease (DKD), is the primary disease leading to end-stage renal disease (ESRD) or dialysis treatment, accounting for more than 40% of all patients with ESRD or receiving dialysis. Developing new therapeutics to prevent the transition to ESRD or dialysis treatment requires an understanding of the pathophysiology of DKD and an appropriate animal model for drug efficacy studies. In this study, we investigated the pathophysiology of diabetic kidney disease with type 2 diabetes in uninephrectomized db/db mice. In addition, the nephrectomized db/db mice from 10 weeks to 42 weeks were used to assess the efficacy of long-term administration of the angiotensin-II–receptor antagonist losartan. The blood and urinary biochemical parameters and the blood pressure which is a main pharmacological endpoint of the losartan therapy, were periodically measured. And at the end, histopathological analysis was performed. Uninephrectomized db/db mice clearly developed obesity and hyperglycemia from young age. Furthermore, they showed renal pathophysiological changes, such as increased urinary albumin-creatinine ratio (UACR) (the peak value 3104±986 in 40-week-old mice), glomerular hypertrophy and increased fibrotic areas in the tubulointerstitial tubules. The blood pressure in the losartan group was significantly low compared to the normotensive Vehicle group. However, as expected, Losartan suppressed the increase in UACR (829±500) indicating the medication was sufficient, but the histopathological abnormalities including tubular interstitial fibrosis did not improve. These results suggest that the uninephrectomized db/db mice are useful as an animal model of the severe DKD indicated by the comparison of the efficacy of losartan in this model with the efficacy of losartan in clinical practice.
Collapse
Affiliation(s)
| | - T Maekawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF- β1/Smad3 and HIF1 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9963732. [PMID: 34545331 PMCID: PMC8449228 DOI: 10.1155/2021/9963732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
Acute kidney injury (AKI) is responsible for significant mortality among hospitalized patients that is especially troubling aged people. An effective self-made Chinese medicine formula, Xiaoyu Xiezhuo Drink (XXD), displayed therapeutic effects on AKI. However, the compositions and underlying mechanisms of XXD remain to be elucidated. In this study, we used the ultra-high-performance liquid chromatography method coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) to investigate the chemical components in XXD. Then, the absorbable components of XXD were identified based on the five principles and inputted into the SwissTargetPrediction and STITCH databases to identify the drug targets. AKI-related targets were collected from the GenCLiP 3, GeneCards, and DisGeNET databases. The crossover genes of XXD and AKI were identified for functional enrichment analysis. The protein-protein interaction (PPI) network of crossover genes was constructed, followed by the identification of hub genes. Subsequently, the effects and potential mechanisms of XXD on AKI predicted by the network pharmacology and bioinformatics analyses were experimentally validated in ischemia-reperfusion (I/R) injury-induced AKI aged mouse models. A total of 122 components in XXD were obtained; among them, 58 components were found that could be absorbed in the blood. There were 800 potential drug targets predicted from the 58 absorbable components in AKI which shared 36 crossover genes with AKI-related targets. The results of functional enrichment analysis indicated that crossover genes mostly associated with the response to oxidative stress and the HIF1 signaling pathway. In the PPI network analysis, 12 hub genes were identified, including ALB, IL-6, TNF, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, and HMOX1. In AKI aged mice, XXD prominently alleviated I/R injury-induced renal dysfunction, abnormal renal pathological changes, and cellular senescence, inflammation, and oxidative damage with a reduction in the expression level of the inflammatory mediator, α-SMA, collagen-1, F4/80, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, ICAM-1, TGF-β1, Smad3, and p-Smad3 and an increase of nephridial tissue p-H3, Ki67, HMOX1, MMP-9, and Smad7 levels. In summary, our findings suggest that XXD has renoprotective effects against AKI in aged mice via inhibiting the TGF-β1/Smad3 and HIF1 signaling pathways.
Collapse
|
6
|
Du X, Tao Q, Du H, Zhao Z, Dong Y, He S, Shao R, Wang Y, Han W, Wang X, Zhu Y. Tengdan Capsule Prevents Hypertensive Kidney Damage in SHR by Inhibiting Periostin-Mediated Renal Fibrosis. Front Pharmacol 2021; 12:638298. [PMID: 34084130 PMCID: PMC8167194 DOI: 10.3389/fphar.2021.638298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Hypertension-induced renal damage is a serious and complex condition that has not been effectively treated by conventional blood pressure-lowering drugs. Tengdan capsule (TDC) is a China FDA-approved compound herbal medicine for treating hypertension; however, its chemical basis and pharmacological efficacy have not been fully investigated in a preclinical setting. METHODS: High-performance liquid chromatography (HPLC) was used to identify and quantify the major chemical components of TDC extracted from ultrapure water. Adult spontaneously hypertensive rats (SHR) and age/sex-matched Wistar Kyoto normotensive rats (WKY) were both treated with TDC, losartan, or saline for one month, and their blood pressure (BP) was monitored at the same time by tail-cuff BP system. Biochemical indexes such as urine creatinine (CRE) and blood urea nitrogen (BUN) were determined. Kidney tissue sections were examined with (H&E), and Masson staining to evaluate the pathological effect of TDC on SHR’s kidneys. After TDC treatment, the differentially expressed proteins in the kidneys of SHR were identified by the TMT-based quantitative proteomics analysis, which may provide the targets and possible mechanisms of TDC action. In addition, Western blot analysis, RT-qPCR, and ELISA assays were carried out to further verify the proteomics findings. Finally, two different models involving in vitro renal injuries were established using human kidney HEK293 cells; and the molecular mechanism of TDC kidney protection was demonstrated. RESULTS: Seven chemical compounds, namely Notoginsenoside R1, Ginsenoside RG1, Ginsenoside Re, Ginsenoside Rb1, Sodium Danshensu, Protocatechualdehyde, and Salvianolic acid B, were identified and quantified from the water-soluble extracts of TDC by HPLC. In vivo study using rats showed that TDC effectively reduced BP, BUN, and CRE levels and attenuated renal fibrosis in SHR, and ameliorated damage to the kidneys. Proteomics and subsequent bioinformatics analyses indicated that periostin-mediated inflammatory response and TGFβ/Smad signaling pathway proteins were closely related to the therapeutic effect of TDC in rat kidneys. Western blot analysis and RT-qPCR showed that TDC markedly downregulated the mRNA and protein expression of periostin in renal tissues compared to the untreated SHR. In addition, TGF-β and COL1A1 mRNA levels also decreased in SHR renal tissues following TDC treatment. In vitro studies showed that low to medium doses of TDC down-regulated the expression of periostin in the injury model of HEK293 cell. In addition, medium to high doses of TDC significantly inhibited collagen deposition in TGFβ1-induced HEK293 cell fibrosis. CONCLUSIONS: Major components from the compound herbal medicine Tengdan Capsule are identified and quantified. TDC effectively lowers blood pressure and protects against renal damage caused by hypertension in SHR. Mechanistically, TDC blocks periostin by regulating the TGF-β/Smad signaling pathway in the kidney, both in vivo and in vitro. Preventing periostin-mediated renal fibrosis and inflammation might be a promising strategy for treating a hypertensive renal injury.
Collapse
Affiliation(s)
- Xiaoli Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Qianqian Tao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongxia Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhenbang Zhao
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China
| | - Yu Dong
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang He
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Shao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yule Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenrun Han
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xintong Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yan Zhu
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
7
|
Qin T, Wu Y, Liu T, Wu L. Effect of Shenkang on renal fibrosis and activation of renal interstitial fibroblasts through the JAK2/STAT3 pathway. BMC Complement Med Ther 2021; 21:12. [PMID: 33407391 PMCID: PMC7789243 DOI: 10.1186/s12906-020-03180-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Activation of renal fibroblasts is a critical mechanism in the process of renal fibrosis. As a commonly used herbal formula, Shenkang (SK) has been found to attenuate renal fibrosis and renal parenchyma destruction. However, the effect of SK on renal fibroblast activation in unilateral ureteral obstruction (UUO) mice and its molecular mechanism remain undetermined. The present study was performed to elucidate the effect of SK on renal fibroblast activation and renal fibrosis, as well as the potential underlying mechanism, in both NRK-49F cells and UUO mice. METHODS NRK-49F cells were stimulated with 10 ng/ml TGF-β1 for 48 h. After SK treatment, the CCK-8 method was used to evaluate cell viability. Thirty-six C57BL/6 mice were randomly divided into the sham group, UUO group, angiotensin receptor blocker (ARB) group, and SK high-, moderate- and low-dose groups. UUO was induced in mice except those in the sham group. Drugs were administered 1 day later. On the 13th day, the fractional anisotropy (FA) value was determined by MRI to evaluate the degree of renal fibrosis. After 14 days, serum indexes were assessed. Hematoxylin and eosin (HE) and Sirius red staining were used to observe pathological morphology and the degree of fibrosis of the affected kidney. Western blotting and PCR were used to assess the expression of related molecules in both cells and animals at the protein and gene levels. RESULTS Our results showed that SK reduced extracellular matrix (ECM) and α-smooth muscle actin (α-SMA) expression both in vitro and in vivo and attenuated renal fibrosis and the pathological lesion degree after UUO, suppressing JAK2/STAT3 activation. Furthermore, we found that SK regulated the JAK2/STAT3 pathway regulators peroxiredoxin 5 (Prdx5) in vitro and suppressor of cytokine signaling protein 1 (SOCS1) and SOCS3 in vivo. CONCLUSIONS These results indicated that SK inhibited fibroblast activation by regulating the JAK2/STAT3 pathway, which may be a mechanism underlying its protective action in renal fibrosis.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You Wu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
8
|
Essam M, Barakat N, Elkashef A, Awadalla A, Behery AE, Abdel-Maboud M. Functional and molecular evaluation of using aliskiren during acute and chronic partial ureteral obstruction in rat solitary kidney. Life Sci 2020; 265:118811. [PMID: 33259867 DOI: 10.1016/j.lfs.2020.118811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
AIMS To study the effect of direct renin inhibitor (aliskiren) on the renal function during acute and chronic partial ureteral obstruction (PUO) in rat solitary kidney. MAIN METHODS Sixty male Sprague-Dawley rats were randomly allocated into three groups (20 rats each); sham, PUO and aliskiren groups. Right nephrectomy was performed in all groups. Rats in PUO and aliskiren groups were subjected to left PUO and received no treatment and aliskiren (10 mg/kg, orally, once per day till sacrification), respectively. Blood samples were then collected for biochemical measurements. Ten rats from each group were sacrificed after two weeks, while the remaining rats were sacrificed after four weeks. Left kidneys were harvested for histopathological examination, BCL-2, interleukin (IL)-6, transforming growth factor (TGF)-β1, collagen I and fibronectin relative gene expression and assessment of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) activity. KEY FINDINGS After two and four weeks of PUO, aliskiren significantly recompensed the rise of serum creatinine (Scr) and blood urea nitrogen (BUN). Aliskiren also revealed significantly better histopathological results regarding cortical and medullary necrosis, regeneration and inflammatory cell infiltration. Aliskiren group showed statistically significant up-regulation of BCL-2 and down-regulation of IL-6, TGF-β1, collagen I and fibronectin relative gene expression. Aliskiren significantly increased GSH and SOD activity and reduced MDA and NO activity. Moreover, aliskiren administration for four weeks after PUO significantly yielded more renoprotective effect compared to its administration for two weeks. SIGNIFICANCE Aliskiren ameliorates the deterioration of the renal function during acute and chronic PUO in a solitary kidney.
Collapse
Affiliation(s)
- Mohamed Essam
- Department of General Surgery, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Nashwa Barakat
- Department of Urology, Urology and Nephrology Center, Mansoura University, Egypt
| | - Ahmed Elkashef
- Department of Urology, Urology and Nephrology Center, Mansoura University, Egypt.
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Egypt
| | - A E Behery
- Department of General Surgery, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mahmoud Abdel-Maboud
- Department of General Surgery, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
9
|
Transcriptomic analysis of the mechanisms of alleviating renal interstitial fibrosis using the traditional Chinese medicine Kangxianling in a rat model. Sci Rep 2020; 10:10682. [PMID: 32606425 PMCID: PMC7327068 DOI: 10.1038/s41598-020-67690-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is currently recognized as a crucial mechanism of the pathogenesis of chronic kidney disease (CKD). Kangxianling (KXL, anti-fibrin) is a traditional Chinese medicine that has been proven to significantly reduce the levels of ECM deposition and inhibit renal fibrosis.
To characterize the mechanisms and drug targets of KXL, we established a RIF rat model and treated the rats with KXL and losartan. Histological analyses validated the establishment of the RIF model and the treatment effect of KXL. Multiple levels of transcriptomic datasets were generated using lncRNA, mRNA and microRNA sequencing of kidney tissues. Functional annotations and pathway analyses were performed to unravel the therapeutic mechanisms.
A multi-level transcriptomic regulatory network was built to illustrate the core factors in fibrosis pathogenesis and therapeutic regulation. KXL and losartan significantly reduced the progression of RIF, and a better therapeutic effect was shown with higher concentrations of KXL. According to the cluster analysis results of the RNA-seq data, the normal control (NC) and high concentration of KXL (HK) treatment groups were the closest in terms of differentially expressed genes. The WNT, TGF-β and MAPK pathways were enriched and dominated the pathogenesis and therapy of RIF. miR-15b, miR-21, and miR-6216 were upregulated and miR-107 was downregulated in the fibrosis model. These small RNAs were shown to play critical roles in the regulation of the above fibrosis-related genes and could be inhibited by KXL treatment. Finally, based on the lncRNA datasets, we constructed a mRNA-lncRNA-miRNA coexpression ceRNA network, which identified key regulatory factors in the pathogenesis of kidney fibrosis and therapeutic mechanisms of KXL. Our work revealed the potential mechanism of the Chinese medicine Kangxianling in inhibiting renal interstitial fibrosis and supported the clinical use of KXL in the treatment of kidney fibrosis.
Collapse
|
10
|
Liu P, Zhang B, Chen Z, He Y, Du Y, Liu Y, Chen X. m 6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway. Aging (Albany NY) 2020; 12:5280-5299. [PMID: 32203053 PMCID: PMC7138587 DOI: 10.18632/aging.102950] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/09/2020] [Indexed: 01/15/2023]
Abstract
Renal fibrosis is a key factor in chronic kidney disease (CKD). Long non-coding RNAs (lncRNAs) play important roles in the physiological and pathological progression of human diseases. However, the roles and underlying mechanisms of lncRNAs in renal fibrosis still need to be discovered. In this study, we first displayed the increased lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in renal fibrosis in patients with obstructive nephropathy (ON). Then we found that transforming growth factor beta 1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition, which promoted the viability, proliferation and migration of human renal proximal tubular epithelial (HK2) cells. Next, MALAT1/miR-145/focal adhesion kinase (FAK) pathway was confirmed to play an importment role in TGF-β1-induced renal fibrosis. In addition, the MALAT1/miR-145/FAK pathway was involved in the effect of dihydroartemisinin (DHA) on TGF-β1-induced renal fibrosis in vitro and in vivo. Furthermore, m6A methyltransferase methyltransferase-like 3 (METTL3) was shown to be the main methyltransferase of m6A modification on MALAT1.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yongchao Du
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| |
Collapse
|
11
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
12
|
ÇİMEN S, TAŞDEMİR C, VARDI N, ATEŞ B, TAŞDEMİR S, ÖZAYDOĞDU ÇİMEN A. Protective effects of ghrelin on kidney tissue in rats with partial ureteral obstruction. Turk J Med Sci 2019; 49:696-702. [PMID: 30997983 PMCID: PMC7018211 DOI: 10.3906/sag-1802-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background/aim The aim was to investigate the protective and therapeutic effects of ghrelin, which has antioxidant and antiinflammatory activity, on preventing kidney damage that occurs by induced partial ureteral obstruction in rats Materials and methods Twenty-eight adult male rats were included in the study, and the rats were divided into 4 groups. After the laparotomy operation on the sham group, the ureter was identified in the retroperitoneal area and was duly sutured (n = 7). Ghrelin was administered for seven days intraperitoneally, and after the nephrectomy performed on the 15th day, the rats were sacrificed (n = 7). A partial ureteral obstruction was performed after the laparotomy on the PUO group. The rats were sacrificed after the nephrectomy operation performed on the 15th day (n = 7). A partial ureteral obstruction was formed after the laparotomy followed by seven days of waiting in the PUO + ghrelin group. Ghrelin was given in the dose of 10 ng/kg per day intraperitoneally for the next 7 days, and the rats were sacrificed after the nephrectomy operation performed on the 15th day (n = 7). All groups were evaluated for histological damage and catalase, superoxide dismutase, total glutathione, malondialdehyde, and myeloperoxidase levels were measured in the same tissues Results When the 2nd group and the sham group were compared histologically, it was observed that the damage had increased by a statistically significant level in the partial ureteral obstruction group (P = 0.001). When the group which was ghrelin-treated after the partial ureteral obstruction was compared to the group with just partial ureteral obstruction, the histopathological changes were found to decrease significantly in that group (P = 0.001). While the statistical significance of the levels of CAT, GSH, and MPO enzymes was detected among biochemical changes in the 2nd group when compared to the sham group (P < 0.01), the 3rd group showed a statistically significant difference in the levels of SOD and GSH enzymes compared to the 4th group (P < 0.05). Conclusion Ghrelin administration to rats after the formation of an experimental partial unilateral ureteral obstruction reduces tissue damage due to ghrelin’s antiinflammatory and antioxidant effects. Ghrelin administration may prevent tissue damage biochemically and histopathologically in obstructive uropathy cases
Collapse
Affiliation(s)
- Serhan ÇİMEN
- Department of Urology, Malatya Training and Research Hospital, MalatyaTurkey
- * To whom correspondence should be addressed. E-mail:
| | - Cemal TAŞDEMİR
- Department of Urology, Turgut Özal Medical Center, İnönü University, MalatyaTurkey
| | - Nigar VARDI
- Department of Histology, Turgut Özal Medical Center, İnönü University, MalatyaTurkey
| | - Burhan ATEŞ
- Department of Chemistry, Faculty of Science, İnönü University, MalatyaTurkey
| | - Seda TAŞDEMİR
- Department of Pharmacology, Turgut Özal Medical Center, İnönü University, MalatyaTurkey
| | | |
Collapse
|
13
|
Dexmedetomidine Ameliorates Acute Stress-Induced Kidney Injury by Attenuating Oxidative Stress and Apoptosis through Inhibition of the ROS/JNK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4035310. [PMID: 30250633 PMCID: PMC6140004 DOI: 10.1155/2018/4035310] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
Acute stress induces tissue damage through excessive oxidative stress. Dexmedetomidine (DEX) reportedly has an antioxidant effect. However, protective roles and related potential molecular mechanisms of DEX against kidney injury induced by acute stress are unknown. Herein, rats were forced to swim 15 min followed by restraint stress for 3 h with/without DEX (30 μg/kg). Successful model establishment was validated by an open-field test. Assessment of renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde, glutathione, and superoxide dismutase), and apoptosis (transferase-mediated dUTP nick end labeling) was performed. Localization of apoptosis was determined by immunohistochemistry of cleaved caspase 3 protein. In addition, key proteins of the death receptor-mediated pathway, mitochondrial pathway, endoplasmic reticulum stress (ERS) pathway, and ROS/JNK signaling pathway were measured by Western blot. We found that DEX significantly improved renal dysfunction, ameliorated kidney injury, reduced oxidative stress, and alleviated apoptosis. DEX also inhibited the release of norepinephrine (NE), decreased the production of reactive oxygen species (ROS), and inhibited JNK phosphorylation. Additionally, DEX downregulated the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3 proteins in mitochondria-dependent pathways. In summary, DEX protects against acute stress-induced kidney injury in rats by reducing oxidative stress and apoptosis via inhibition of the ROS/JNK pathway.
Collapse
|
14
|
Dorotea D, Cho A, Lee G, Kwon G, Lee J, Sahu PK, Jeong LS, Cha DR, Ha H. Orally active, species-independent novel A 3 adenosine receptor antagonist protects against kidney injury in db/db mice. Exp Mol Med 2018; 50:1-14. [PMID: 29674631 PMCID: PMC5938017 DOI: 10.1038/s12276-018-0053-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and the current pharmacological treatment for DKD is limited to renin-angiotensin system (RAS) inhibitors. Adenosine is detectable in the kidney and is significantly elevated in response to cellular damage. While all 4 known subtypes of adenosine receptors, namely, A1AR, A2aAR, A2bAR, and A3AR, are expressed in the kidney, our previous study has demonstrated that a novel, orally active, species-independent, and selective A3AR antagonist, LJ-1888, ameliorates unilateral ureteral obstruction-induced tubulointerstitial fibrosis. The present study examined the protective effects of LJ-2698, which has higher affinity and selectivity for A3AR than LJ-1888, on DKD. In experiment I, dose-dependent effects of LJ-2698 were examined by orally administering 1.5, 5, or 10 mg/kg for 12 weeks to 8-week-old db/db mice. In experiment II, the effects of LJ-2698 (10 mg/kg) were compared to those of losartan (1.5 mg/kg), which is a standard treatment for patients with DKD. LJ-2698 effectively prevented kidney injuries such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, inflammation, and oxidative stress in diabetic mice as much as losartan. In addition, inhibition of lipid accumulation along with increases in PGC1α, a master regulator of mitochondrial biogenesis, were demonstrated in diabetic mice treated with either LJ-2698 or losartan. These results suggest that LJ-2698, a selective A3AR antagonist, may become a novel therapeutic agent against DKD. A therapeutic treatment targeting a protein involved in the progression of diabetic kidney disease (DKD) shows promise in mouse trials. Between 30 and 40 per cent of diabetic patients suffer from DKD, a common cause to fatal end-stage kidney disease. Protein receptors, commonly expressed on cell surfaces throughout the body, play both positive and negative roles in diseases. The A3 adenosine receptor (A3AR) is highly expressed in diabetic kidney tissue, and is linked to disease progression. Hunjoo Ha at Ewha Womans University in Seoul, Republic of Korea, and co-workers demonstrated the positive effect of a novel drug in targeting A3AR in mice with DKD. A 12-week treatment of the drug prevented kidney injury, lowered oxidative stress and inflammation, and improved kidney function. It may prove an invaluable drug, particularly in combination with an existing DKD drug.
Collapse
Affiliation(s)
- Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Guideock Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Junghwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Pramod K Sahu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea.,Future Medicine Co, Seoul, Korea
| | - Lak Shin Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
15
|
Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats. Pharmacol Rep 2017; 69:648-657. [DOI: 10.1016/j.pharep.2017.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
|
16
|
Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin. Int J Mol Sci 2017; 18:ijms18020305. [PMID: 28146117 PMCID: PMC5343841 DOI: 10.3390/ijms18020305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.
Collapse
|
17
|
Zhang J, Zheng L, Yuan X, Liu C, Yuan Q, Xie F, Qiu S, Peng Z, Tang Y, Meng J, Qin J, Hu G, Tao L. Mefunidone ameliorates renal inflammation and tubulointerstitial fibrosis via suppression of IKKβ phosphorylation. Int J Biochem Cell Biol 2016; 80:109-118. [DOI: 10.1016/j.biocel.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
|
18
|
Mei W, Peng Z, Lu M, Liu C, Deng Z, Xiao Y, Liu J, He Y, Yuan Q, Yuan X, Tang D, Yang H, Tao L. Peroxiredoxin 1 inhibits the oxidative stress induced apoptosis in renal tubulointerstitial fibrosis. Nephrology (Carlton) 2015; 20:832-42. [PMID: 25989822 DOI: 10.1111/nep.12515] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Wenjuan Mei
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhangzhe Peng
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Miaomiao Lu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Chunyan Liu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhenghao Deng
- Division of Pathology; Xiangya Hospital; Central South University; Changsha China
| | - Yun Xiao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Jishi Liu
- Division of Nephrology; The Third Xiangya Hospital; Central South University; Changsha China
| | - Ying He
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Qiongjing Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Xiangning Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Damu Tang
- Division of Nephrology; Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Huixiang Yang
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Lijian Tao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
- State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
| |
Collapse
|