1
|
Sen P, Ghosh SS. The Intricate Notch Signaling Dynamics in Therapeutic Realms of Cancer. ACS Pharmacol Transl Sci 2023; 6:651-670. [PMID: 37200816 PMCID: PMC10186364 DOI: 10.1021/acsptsci.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/20/2023]
Abstract
The Notch pathway is remarkably simple without the interventions of secondary messengers. It possesses a unique receptor-ligand interaction that imparts signaling upon cleavage of the receptor followed by the nuclear localization of its cleaved intracellular domain. It is found that the transcriptional regulator of the Notch pathway lies at the intersection of multiple signaling pathways that enhance the aggressiveness of cancer. The preclinical and clinical evidence supports the pro-oncogenic function of Notch signaling in various tumor subtypes. Owing to its oncogenic role, the Notch signaling pathway assists in enhanced tumorigenesis by facilitating angiogenesis, drug resistance, epithelial to mesenchymal transition, etc., which is also attributed to the poor outcome in patients. Therefore, it is extremely vital to discover a suitable inhibitor to downregulate the signal-transducing ability of Notch. The Notch inhibitory agents, such as receptor decoys, protease (ADAM and γ-secretase) inhibitors, and monoclonal/bispecific antibodies, are being investigated as candidate therapeutic agents. Studies conducted by our group exemplify the promising results in ablating tumorigenic aggressiveness by inhibiting the constituents of the Notch pathway. This review deals with the detailed mechanism of the Notch pathways and their implications in various malignancies. It also bestows us with the recent therapeutic advances concerning Notch signaling in the context of monotherapy and combination therapy.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Pongjantarasatian S, Nowwarote N, Rotchanakitamnuai V, Srirodjanakul W, Saehun R, Janebodin K, Manokawinchoke J, Fournier BPJ, Osathanon T. A γ-Secretase Inhibitor Attenuates Cell Cycle Progression and Invasion in Human Oral Squamous Cell Carcinoma: An In Vitro Study. Int J Mol Sci 2022; 23:8869. [PMID: 36012128 PMCID: PMC9408752 DOI: 10.3390/ijms23168869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is associated with many human malignancies, including oral squamous cell carcinoma (OSCC). However, the exact function of Notch signaling in OSCC remains unclear. Here, we investigated the effect of Notch signaling inhibition using a γ-secretase inhibitor (DAPT) on OSCC behaviours in vitro. Bioinformatic analysis of public-available gene expression profiles revealed the dysregulation of the Notch signaling pathway in OSCC compared with normal tissues, indicating the role of Notch signaling in OSCC regulation. RNA sequencing analysis of DAPT-treated human OSCC cells revealed the dysregulation of genes related to cell cycle-related pathways. Blocking Notch signaling significantly inhibited cell proliferation. DAPT-induced G0/G1 cell cycle arrest induced cell apoptosis. Furthermore, cell migration and invasion were also reduced in DAPT-treated cells. These findings indicate that Notch signaling activation participates in OSCC regulation by promoting cell growth, cell cycle progression, cell migration, and invasion. These mechanisms could facilitate OSCC progression. These results imply the potential use of Notch signaling inhibitors as a candidate adjuvant treatment in OSCC patients.
Collapse
Affiliation(s)
- Sarai Pongjantarasatian
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Varumporn Rotchanakitamnuai
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharee Srirodjanakul
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ritmongkol Saehun
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kajohnkiart Janebodin
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Wang H, Wang Y, Wang Y. MiR-222-3p inhibits formation of medulloblastoma stem-like cells by targeting Notch2/c-myc signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:548-555. [PMID: 35379056 DOI: 10.1080/08923973.2022.2062381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is an embryonal tumor of the cerebellum, which commonly occurs in childhood. Herein, we investigated the effects of miR-222-3p on the formation of MB stem-like cells via the Notch2/c-myc pathway. METHODS Quantitative real-time PCR (qRT-PCR) or western blotting was performed to determine the expression of miR-222-3p and Notch2, c-myc, proliferating cell nuclear antigen (PCNA), and caspase-3. Luciferase reporter gene, RNA immunoprecipitation (RIP), and RNA pull-down assay were applied to confirm the interaction between miR-222-3p and Notch2. Cell growth was examined by Cell Counting Kit-8. Cell cycle distribution and the number of stem cell marker CD133+ cells were examined using flow cytometry. The sphere formation assay was performed. RESULTS miR-222-3p expression was decreased and Notch2 expression was increased in human medulloblastoma cells. miR-222-3p overexpression inhibited cell viability and the sphere formation, induced cell cycle arrest, decreased the number of CD133+ cells, and up-regulated caspase-3 expression and down-regulated PCNA, Notch2, and c-myc expression. However, Notch2 overexpression counteracted these effects of miR-222-3p overexpression. Simultaneous overexpression of Notch2 and miR-222-3p increased the c-myc promoter luciferase activity which was decreased by miR-222-3p overexpression. Luciferase reporter gene, RIP, and RNA pull-down assay revealed that miR-222-3p targeted Notch2. CONCLUSION MiR-222-3p suppressed cell viability, altered cell cycle distribution, and inhibited the formation of MB stem-like cells via the Notch2/c-myc pathway.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Clinical Laboratory, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou; 450003, China
| | - Yushe Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Shabani M, Javanshir HT, Bereimipour A, Sadrabadi AE, Jalili A, Nayernia K. Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis. Galen Med J 2021; 10:e2091. [PMID: 36643842 PMCID: PMC9829453 DOI: 10.31661/gmj.v10i0.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Many genes induce angiogenesis in tumors, and among them, Notch family genes have received particular attention due to their extensive network of connections with other genes active in this function. Suppression of angiogenic signaling has been studied in various cancers, confirming Notch's fundamental and extensive role. According to studies, four Notch genes work independently with many genes such as vascular endothelial growth factor, phosphatase and tensin homolog, Phosphoinositide 3-kinase/Akt, and matrix metalloproteinases, and so many other genes, as well as proteins (such as hypoxia-inducible factor-1 alpha) significantly affect tumor angiogenesis. Notch1 regular activity in a healthy person causes angiogenesis in body tissues, controlled by normal Notch2 activity. However, in many cases of glioblastoma, whether on patients or tumor xenografts or in vivo models, a mutation in one of these two essential genes or at least one of the genes and proteins that affected by them can cause better angiogenesis in hypoxic conditions and lead to become an invasive tumor. In this review, we examined the contrasting activity of Notch1 and Notch2 and the signaling cascade that each generates in the angiogenesis of glioblastoma, the most invasive cancer of the central nervous system.
Collapse
Affiliation(s)
- Mostafa Shabani
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Taghvaei Javanshir
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Young Researchers and Elite Club, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Karim Nayernia
- International Center for Personalized Medicine, Düsseldorf, Germany
- Karim Nayernia, International Center for Personalized Medicine, Düsseldorf, Germany. Telephone Number: +4921144773490 Email Address:
| |
Collapse
|
5
|
Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 2020; 53:e12764. [PMID: 32077168 PMCID: PMC7106969 DOI: 10.1111/cpr.12764] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives microRNA‐29 (miR‐29) family have shown different expression patterns in cardiovascular diseases. Our study aims to explore the effect and mechanism of miR‐29 family on cardiac development. Materials and methods A total of 13 patients with congenital heart disease (CHD) and 7 controls were included in our study. Tissues were obtained from the right ventricular outflow tract (RVOT) after surgical resection or autopsy. The next‐generation sequencing was applied to screen the microRNA expression profiles of CHD. Quantitative RT‐PCR and Western blot were employed to measure genes expression. Tg Cmlc2: GFP reporter zebrafish embryos were injected with microRNA (miRNA) to explore its role in cardiac development in vivo. Dual‐luciferase reporter assay was designed to validate the target gene of miRNAs. CCK‐8 and EdU incorporation assays were performed to evaluate cardiomyocyte proliferation. Results Our study showed miR‐29b‐3p expression was significantly increased in the RVOT of the CHD patients. Injection of miR‐29b‐3p into zebrafish embryos induced higher mortality and malformation rates, developmental delay, cardiac malformation and dysfunction. miR‐29b‐3p inhibited cardiomyocyte proliferation, and its inhibitor promoted cardiomyocyte proliferation in vitro and in vivo. Furthermore, we identified that miR‐29b‐3p influenced cardiomyocyte proliferation by targeting NOTCH2, which was down‐regulated in the RVOT of the CHD patients. Conclusion This study reveals that miR‐29b‐3p functions as a novel regulator of cardiac development and inhibits cardiomyocyte proliferation via NOTCH2, which provides novel insights into the aetiology and potential treatment of CHD.
Collapse
Affiliation(s)
- Qian Yang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoshan Yang
- Department of Bioscience, Bengbu Medical College, Bengbu, China
| | - Ranran Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yuan Y, Wang X, Sun Q, Dai X, Cai Y. MicroRNA-16 is involved in the pathogenesis of pre-eclampsia via regulation of Notch2. J Cell Physiol 2019; 235:4530-4544. [PMID: 31643078 DOI: 10.1002/jcp.29330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
In recent years, the role of microRNAs (miRNAs) in pre-eclampsia (PE) has been demonstrated, while the relevant mechanisms of miR-16 in PE await to be unearthed. Thus, the aim of this study is to explore whether miR-16 exerts its function in PE, and we assumed that miR-16 may be implicated in the occurrence of PE by adjusting the biological functions of trophoblast cells via modulating Notch2. Placental tissues of pregnant women with normal pregnancy and PE were collected to detect the expression of miR-16, Notch2, and Notch3. The effects of miR-16 and Notch2 on the biological functions of BeWo and JEG-3 cells were further determined. Expression of miR-16 and Notch2 in trophoblast cells was detected by reverse transcription quantitative polymerase chain reaction and western blot assay. Downregulated Notch2 and upregulated miR-16 and Notch3 were found in placental tissues of PE. There was a negative correlation between Notch2 and miR-16 expression (r = -0.769), and a positive correlation between Notch3 and miR-16 expression (r = 0.676; p < .05). Overexpression of miR-16 inhibited proliferation, migration, and invasion, and facilitated the apoptosis of BeWo and JEG-3 cells, but overexpression of Notch2 reversed this trend. Overexpression of miR-16 inhibited Notch2 expression in BeWo and JEG-3 cells, and Notch2 was the target gene of miR-16. Our study highlights that overexpression of miR-16 is involved in PE by regulating the biological functions of trophoblast cells via inhibition of Notch2. This paper provides a new idea for further study of the pathogenesis of PE.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xiaoying Wang
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiuyu Sun
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xu Dai
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Cai
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
7
|
Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res 2019; 9:837-854. [PMID: 31218097 PMCID: PMC6556604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023] Open
Abstract
Deregulated Notch signaling is a key factor thought to facilitate the stem-like proliferation of cancer cells, thereby facilitating disease progression. Four subtypes of Notch receptor have been described to date, with each playing a distinct role in cancer development and progression, therefore warranting a careful and comprehensive examination of the targeting of each receptor subtype in the context of oncogenesis. Clinical efforts to translate the DAPT, which blocks Notch signaling, have been unsuccessful due to a combination of serious gastrointestinal side effects and a lack of complete blocking efficacy. There is therefore a clear need to identify better therapeutic strategies for targeting and manipulating Notch signaling. Notch2 is a Notch receptor that is commonly overexpressed in a range of cancers, and which is linked to a unique oncogenic mechanism. Successful efforts to block Notch2 signaling will depend upon doing so both efficiently and specifically in patients. As such, in the present review we will explore the role of Notch2 signaling in the development and progression of cancer, and we will assess agents and strategies with the potential to effectively disrupt Notch2 signaling and thereby yield novel cancer treatment regimens.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yan D, Hao C, Xiao-Feng L, Yu-Chen L, Yu-Bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol 2018; 234:158-170. [PMID: 30076599 DOI: 10.1002/jcp.26775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Glioma is the most aggressive primary brain tumor and is notorious for resistance to chemoradiotherapy. Although its associated mechanisms are still not completely understood, Notch signaling, an evolutionarily conserved pathway, appears to be the key processes involved. Nevertheless, its mechanisms are sophisticated, due to a variety of targets and signal pathways, especially microRNA. MicroRNAs, which are small noncoding regulatory RNA molecules, have been proposed as one of the key mechanisms in glioma pathogenesis. Among the known glioma associated microRNA, microRNA-129, microRNA-34 family, and microRNA-326 have been shown to influence the progress of glioma through Notch signaling. Evidence also indicates that recurrence is due to development or persistence of the glioma stem-like cells and active angiogenesis, which are tightly regulated by a variety of factors, including Notch signaling. In this review, we summarize the recent progress regarding the functional roles of Notch signaling in glioma, including Notch ligand, microRNA, intracellular crosstalk, glioma stem-like cells and active angiogenesis and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for glioma.
Collapse
Affiliation(s)
- Du Yan
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Chen Hao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Li Xiao-Feng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Lu Yu-Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Feng Yu-Bin
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Zhang Lei
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
9
|
Loss of miR-107, miR-181c and miR-29a-3p Promote Activation of Notch2 Signaling in Pediatric High-Grade Gliomas (pHGGs). Int J Mol Sci 2017; 18:ijms18122742. [PMID: 29258209 PMCID: PMC5751342 DOI: 10.3390/ijms18122742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/21/2023] Open
Abstract
The mechanisms by which microRNAs control pediatric high-grade gliomas (pHGGs) have yet to be fully elucidated. Our studies of patient-derived pHGG tissues and of the pHGG cell line KNS42 revealed down-regulation in these tumors of three microRNAs, specifically miR-107, miR-181c, and miR-29a-3p. This down-regulation increases the proliferation of KNS42 cells by de-repressing expression of the Notch2 receptor (Notch2), a validated target of miR-107 and miR-181c and a putative target of miR-29a-3p. Inhibition (either pharmacologic or genetic) of Notch2 or re-expression of the implicated microRNAs (all three combined but also individually) significantly reduced KNS42 cell proliferation. These findings suggest that Notch2 pathway activation plays a critical role in pHGGs growth and reveal a direct epigenetic mechanism that controls Notch2 expression, which could potentially be targeted by novel forms of therapy for these childhood tumors characterized by high-morbidity and high-mortality.
Collapse
|
10
|
Vaughan CA, Singh S, Grossman SR, Windle B, Deb SP, Deb S. Gain-of-function p53 activates multiple signaling pathways to induce oncogenicity in lung cancer cells. Mol Oncol 2017; 11:696-711. [PMID: 28423230 PMCID: PMC5467493 DOI: 10.1002/1878-0261.12068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 01/26/2023] Open
Abstract
Gain-of-function (GOF) mutants of p53 upregulate genes implicated in cell proliferation and oncogenesis. Here, we report that GOF p53 induces tumorigenicity through simultaneous activation of key oncogenic pathways including those controlling putative tumor-initiating cell functions. We determined that in cells expressing p53-R273H, GOF p53 simultaneously upregulates genes from multiple signaling pathways by recognizing promoters containing distinct transcription factor (TF) binding sites. Our analytical data support a model in which GOF p53 complexes with two TFs on the promoter-a mediator protein, Med17, and a histone acetyl transferase, activating histone acetylation-and enhances gene expression to signal cell proliferation and oncogenesis. Thus, therapeutic inhibition of one GOF p53-induced pathway would be insufficient to prevent tumor growth as the oncoprotein activates a multitude of parallel pathways. This discovery suggests enormous selection advantage for cancer cells with GOF p53 to induce oncogenic growth, highlighting the problems of cancer therapy.
Collapse
Affiliation(s)
- Catherine A Vaughan
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Shilpa Singh
- Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R Grossman
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Richmond, VA, USA
| | - Brad Windle
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Swati Palit Deb
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumitra Deb
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Wang C, Li Q, Liu F, Chen X, Liu B, Nesa EU, Guan S, Han L, Tan B, Wang N, Wang X, Song Q, Jia Y, Wang J, Lu M, Cheng Y. Notch2 as a promising prognostic biomarker for oesophageal squamous cell carcinoma. Sci Rep 2016; 6:25722. [PMID: 27158037 PMCID: PMC4860585 DOI: 10.1038/srep25722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
We aimed to examine Notch2 expression in oesophageal squamous cell carcinoma (ESCC) patients and to evaluate its prognostic potential. Immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to investigate the Notch2 expression status and prognostic value. Furtherly, CCK8 and clonogenic assays were conducted to determine if Notch2 inhibition by shRNA could lead to a decrease in the proliferation and survival of ESCC cells. A notably higher Notch2 expression level was found in ESCC tissues at the mRNA (P < 0.0001) and protein levels (IHC: P = 0.004; western blot: P = 0.021). Log-rank analysis demonstrated that Notch2 overexpression was significantly associated with worse overall survival (OS) (29.1% vs. 49.1%; P = 0.013) and progression-free survival (PFS) (15.3% vs. 34.4%; P = 0.006) rates in ESCC patients. The multivariate analysis revealed Notch2 as an independent prognostic factor for OS and PFS (P = 0.002 and 0.006, resp.). Besides, in vitro assays showed that OD450 values and colony formations were significantly reduced in Notch2-shRNA group (all P < 0.0001). In conclusion, these results show that Notch2 is up-regulated in ESCC tissues and could serve as a promising biomarker for identifying individuals with poor prognostic potential.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qingbao Li
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, 250002, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
12
|
Li W, Li X, Xu S, Ma X, Zhang Q. Expression of Tim4 in Glioma and its Regulatory Role in LN-18 Glioma Cells. Med Sci Monit 2016; 22:77-82. [PMID: 26741116 PMCID: PMC4710195 DOI: 10.12659/msm.894963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Tim4 is a transmembrane protein known as T cell immunoglobulin and mucin domain containing protein-4. We speculated that Tim4 might be associated with glioma. This study aimed to investigate the expression level of Tim4 in gliomas and the regulatory role of Tim4 on the growth and apoptosis of LN-18 glioma cells. Material/Methods Tumor tissues and adjacent normal tissues were collected from patients with glioma. The expression level of Tim4 mRNA and protein was determined by RT-PCR and Western blot analyses, respectively to evaluate their association with glioma. Tim4 was overexpressed or silenced by siRNA interference in cultured human glioma cells LN-18. The growth and apoptosis of LN-18 cells was detected by MTT assay and flow cytometry. The colony-forming ability of LN-18 cells was assessed by the colony formation assay. The collection of human tissues was approved by the Research Ethics Committee at the Harbin Medical University Cancer Hospital and performed in strict accordance with international standards. All patients were required to sign the informed consent. Results The expression level of Tim4 mRNA and protein in tumor tissues was significantly higher compared with adjacent normal tissues. Antisense miRNA targeting Tim4 inhibited the growth of LN-18 cells, induced their apoptosis, and reduced their clonogenic capacity. In contrast, overexpression of Tim4 promoted the growth of LN-18 cells, inhibited their apoptosis, and enhanced their clonogenic potential. Conclusions The expression level of Tim-4 is closely associated with glioma. Decreased expression of Tim4 inhibited the growth and colony-forming ability of LN-18 cells and induced their apoptosis, whereas increased expression of Tim4 stimulated the growth and clonogenic potential of LN-18 cells and suppressed their apoptosis.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Xiangyu Ma
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Qiujie Zhang
- Department of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
13
|
DAI MENGYUAN, FANG FANG, ZOU YOU, YI XING, DING YONGJUN, CHEN CHEN, TAO ZEZHANG, CHEN SHIMING. Downregulation of Notch1 induces apoptosis and inhibits cell proliferation and metastasis in laryngeal squamous cell carcinoma. Oncol Rep 2015; 34:3111-9. [DOI: 10.3892/or.2015.4274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 11/06/2022] Open
|
14
|
Liu Y, Shi C, Cui M, Yang Z, Gan D, Wang Y. Different doses of partial liver irradiation promotes hepatic regeneration in rat. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6554-6559. [PMID: 26261535 PMCID: PMC4525869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study is to investigate whether partial liver irradiation promotes hepatic regeneration in rat. Left-half liver of rat was irradiated to 10 Gy, and the Right-half to 0, 5, 10 and 15 Gy, respectively. Then, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels were evaluated on 0 day, 15-day, 30-day, 45-day and 60-day after liver irradiation. Next, the serum HGF, NF-κB and TGF-β1 levels were also analyzed on 60-day after liver irradiation. Lastly, the cyclinD1 protein expression was appraised by western blots on 60-day after liver irradiation. ALT, AST and ALP levels were reduced compared with that of controls. The serum HGF, NF-κB and TGF-β1 levels, and the cyclinD1 protein expression in liver irradiation group were increased compared with that of controls group. However, hepatic regeneration of higher dose-irradiated cirrhotic liver was triggered a more enhanced regeneration, compared with that of higher doses group. In summary, these results suggest that different doses of partial liver irradiation promotes hepatic regeneration in rat.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Meng Cui
- Medical Imaging Center, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Zhenhua Yang
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Danhui Gan
- Department of Pathology, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| | - Yiming Wang
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou 510630, China
| |
Collapse
|