1
|
Ge J, Liu B, Ma L, Su J, Ding Y. Daidzein and puerarin synergistically suppress gastric cancer proliferation via STAT3/FAK pathway Inhibition. Hereditas 2025; 162:58. [PMID: 40217305 PMCID: PMC11992880 DOI: 10.1186/s41065-025-00419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is the world's health is seriously threatened by a prevalent form of aggressive tumor with a dismal prognosis. The occurrence of gastric cancer poses a concern for public health since it is a malignant tumor with an enhanced incidence and fatality level. OBJECTIVE The purpose of this study was to determine if the natural drug Daidzein (DZN) and Puerarin (PRN) together effectively suppress the proliferation of GC cells by blocking the STAT3/FAK intervention signalling pathways in BGC-823 cells. MATERIALS AND METHODS Following a 24-hour treatment with the combination of DZN and PRN, the cells were examined for a number of assays. The MTT test was used to investigate the cytotoxicity of the DZN + PNR combination. Acridine orange/ethidium bromide (AO/EtBr) dual staining experiments were utilized to investigate apoptotic alterations, and Western blotting and flow cytometry were used to assess the protein expressions of the cell survival, cell cycle, proliferation, and apoptosis proteins. RESULTS Our findings showed that, DZN and PRN possessed anticancer properties by blocking the STAT3/FAK signaling cascade. Moreover, we discovered that the DZN and PRN combo reduced the protein levels of STAT3-FAK-dependent targeted genes, such as cyclin-D1, Bcl-2, Bax, MMP-2, prevented the phosphorylation and activation of STAT3, FAK. CONCLUSION The current study's findings suggest that the simultaneous administration of DZN and PNR can stop gastric cancer cells from proliferating, trigger apoptosis, and disrupt their cell cycle.
Collapse
Affiliation(s)
- Jun Ge
- Department of Gastroenterology, Shanghai Municipal Eighth People's Hospital, Shanghai, 200233, China
| | - Binguo Liu
- Department of Pharmacy, No. 983 Hospital of the Chinese People's Liberation Army, Tianjin, 300142, China
| | - Ling Ma
- Department of Gastroenterology, Yinchuan First People's Hospital, Yinchuan Ningxia, 750001, China
| | - Jianyong Su
- Department of Plastic Surgery, Shanghai Baoshan Hospital of Integrated Chinese and Western Medicine, Shanghai, 201900, China
| | - Ying Ding
- Department General Surgery, Shaanxi Provincial Rehabilitation Hospital, Xi'an Shaanxi, 710065, China.
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI, Daglilar E. Plant polyphenols in gastric cancer: Nature's healing touch. Semin Oncol 2025; 52:152333. [PMID: 40073717 DOI: 10.1053/j.seminoncol.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Globally, gastric cancer ranks as the fifth most common cancer and is the third most common cause of malignancy-associated mortality. Although surgery is the primary treatment option for gastric cancer, adjuvant chemotherapy improves survival in patients following surgery. Proverbially, plant polyphenols have many beneficial health effects, including anticancer properties. Extensive studies have shown that plant polyphenols exhibit potential anticancer effects against gastric cancer in vitro and in vivo, as well as very few human studies. However, this topic has not yet been reviewed. The present review shows that the potential anticancer effect of plant polyphenols on gastric cancer was preliminarily attributed to their antiproliferative, antimetastatic, and antiangiogenic effects and modulations of apoptosis, autophagy, and intracellular reactive oxygen species. Moreover, conventional therapeutics combined with plant polyphenols make gastric cancer cells more sensitive to conventional therapy. We also discuss challenges and opportunities in translating plant polyphenol-based therapy to clinical applications. The content provided in this review is of interest to pharmacologists, ethnobotanists, and oncologists who are involved in phytomedicine.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, Vancouver, WA, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology, Charleston Area Medical Center/CAMC Institute for Academic Medicine Program, Charleston, WV, USA
| |
Collapse
|
3
|
Tang M, Zhai L, Chen J, Wang F, Chen H, Wu W. The Antitumor Potential of λ-Carrageenan Oligosaccharides on Gastric Carcinoma by Immunomodulation. Nutrients 2023; 15:2044. [PMID: 37432179 DOI: 10.3390/nu15092044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023] Open
Abstract
Gastric carcinoma is a frequently detected malignancy worldwide, while its mainstream drugs usually result in some adverse reactions, including immunosuppression. λ-carrageenan oligosaccharides (COS) have attracted increasing attention as potential anticancer agents due to their ability to enhance immune function. Our current work assessed the antitumor mechanism of λ-COS using BGC-823 cells. Our findings indicated that λ-COS alone did not have a significant impact on BGC-823 cells in vitro; however, it was effective in inhibiting tumor growth in vivo. When THP-1 cells were pre-incubated with λ-COS and used to condition the medium, BGC-823 cells in vitro displayed a concentration-dependent induction of cell apoptosis, nuclear damage, and the collapse of mitochondrial transmembrane potential. These findings suggested that the antineoplastic effect of λ-COS was primarily due to its immunoenhancement property. Treatment with λ-COS was found to significantly enhance the phagocytic capability of macrophages, increase the secretion of TNF-α and IFN-γ, and improve the indexes of spleen and thymus in BALB/c mice. In addition, λ-COS was found to inhibit the growth of BGC-823-derived tumors in vitro by activating the Par-4 signaling pathway, which may be stimulated by the combination of TNF-α and IFN-γ. When used in combination with 5-FU, λ-COS demonstrated enhanced anti-gastric carcinoma activity and improved the immunosuppression induced by 5-FU alone. These findings suggested that λ-COS could be used as an immune-modulating agent for chemotherapy.
Collapse
Affiliation(s)
- Min Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Leilei Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Wang L, Huo D, Zhu H, Xu Q, Gao C, Chen W, Zhang Y. Deciphering the structure, function, expression and regulation of aquaporin-5 in cancer evolution. Oncol Lett 2021; 21:309. [PMID: 33732385 DOI: 10.3892/ol.2021.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, the morbidity rate resulting from numerous types of malignant tumor has increased annually, and the treatment of tumors has been attracting an increasing amount of attention. A number of recent studies have revealed that the water channel protein aquaporin-5 (AQP5) has become a major player in multiple types of cancer. AQP5 is abnormally expressed in a variety of tumor tissues or cells and has multiple effects on certain biological functions of tumors, such as regulating the proliferation, apoptosis and migration of tumor cells. It has been suggested that AQP5 may play an important role in the process of tumor development, opening up a new field of tumor research. The present review highlighted the structure of AQP5 and its role in tumor progression. Furthermore, the expression of AQP5 in different malignant neoplasms was summarized. In addition, the influence of not only drugs, but also different compounds on AQP5 were summarized. In conclusion, according to the findings in the present review, AQP5 has potential as a novel therapeutic target in human cancer, and other AQPs should be similarly investigated.
Collapse
Affiliation(s)
- Liping Wang
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Da Huo
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Haiyan Zhu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Qian Xu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Wenfeng Chen
- Department of Science and Education, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yixiang Zhang
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
6
|
Li J, Xiong C, Xu P, Luo Q, Zhang R. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway. Bioengineered 2021; 12:402-413. [PMID: 33356808 PMCID: PMC8291817 DOI: 10.1080/21655979.2020.1868733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined the antitumor effects of Puerarin (PEU) on androgen-independent (DU145 and PC-3) and androgen-dependent (LNCaP) prostate cancer cells, and explored its potential mechanisms. Supplement with PEU (2.5 μM, 5 μM, and 10 μM) exhibited a marked inhibitory effect against the growth of DU145 and PC-3 cells, especially beyond 24 h, whereas there is only slight growth inhibitory effect on LNCaP cells at the high concentration of 10 μM at 72 h. This loss of cell viability in DU145 and PC-3 cells by PEU was mediated by the induction of apoptosis via up-regulation of Bax and cleaved-caspase-3, but downregulation of Bcl-2. Moreover, more intracellular ROS and LDH production were observed in DU145 and PC-3 cells upon PEU treatment. Meanwhile, the amount of pro-inflammatory cytokines (IL-1β and IL-6) was increased, but the content of anti-inflammatory cytokines IL-10 was attenuated. Additionally, PEU pretreatment resulted in an increase of Keap1 protein expression, and a decline of Nrf2, HO-1 and NQO1 protein expression in DU145 and PC3 cells. The present findings indicated that PEU exerted its antitumor activities toward androgen-independent prostate cancer cells via inactivation of Keap1/NrF2/ARE signaling pathway.
Collapse
Affiliation(s)
- Jianjun Li
- Urology Surgery Department, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China.,Urology Surgery Department, Traditional Chinese Medicine Hospital of Fengjie , Chongqing, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences , Chengdu,China
| | - Pan Xu
- Institute for Viral Hepatitis, Chongqing Medical University, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Qiang Luo
- Institute for Viral Hepatitis, Chongqing Medical University, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Ronggui Zhang
- Urology Surgery Department, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
7
|
Stagkos‐Georgiadis A, Masoura M, Hatzikamari M, Mourtzinos I, Gkatzionis K. Synergistic antifungal activity and substitution of sorbate with cyclodextrin‐based aqueous extracts of propolis bioactives. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alkiviadis Stagkos‐Georgiadis
- School of Chemical Engineering University of Birmingham Birmingham UK
- Department of Food Science and Technology School of Agriculture Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria Masoura
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Magdalini Hatzikamari
- Department of Food Science and Technology School of Agriculture Aristotle University of Thessaloniki Thessaloniki Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology School of Agriculture Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Gkatzionis
- School of Chemical Engineering University of Birmingham Birmingham UK
- Department of Food Science and Nutrition School of the Environment University of the Aegean Lemnos Greece
| |
Collapse
|
8
|
Li L, Liu J, Gao G, Zhang K, Song Y, Li H. Puerarin 6″-O-xyloside suppressed HCC via regulating proliferation, stemness, and apoptosis with inhibited PI3K/AKT/mTOR. Cancer Med 2020; 9:6399-6410. [PMID: 32691991 PMCID: PMC7476825 DOI: 10.1002/cam4.3285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Puerarin 6″-O-xyloside is a tumor suppressive derivate of Puerarin that is recently characterized as a lysine-specific demethylase 6B inhibitor. Here we investigated the effects of Puerarin 6″-O-xyloside in hepatocellular carcinoma (HCC) cell lines SMMC-7721 and HepG2. Cell viability, proliferation, stemness, protein expression, and autophagy were tested by CCK-8, colony formation, sphere formation, western blotting, and LC3B GFP puncta per cell, respectively. Apoptosis, CD133-positive cells, and JC-1-labeled mitochondrial membrane potential were measured by flow cytometry. The effects of Puerarin 6″-O-xyloside in vivo were explored in HepG2 xenograft mice. Puerarin 6″-O-xyloside inhibited cell viability, proliferation, and stemness, and promoted apoptosis in both SMMC-7721 and HepG2 cells. Further experiments showed promoted autophagy and decreased mitochondrial membrane potential, and decreased expression of p-PI3K, p-AKT, and p-mTOR in HepG2 cells. Co-administration of 3-MA with Puerarin 6″-O-xyloside obviously augmented these effects including inhibited protein expression of p-PI3K, p-AKT, and p-mTOR, and inhibited proliferation, promoted apoptosis, and decreased stemness. In HepG2 xenograft mice, 100 mg/kg/d Puerarin 6″-O-xyloside significantly suppressed tumor growth, stemness, and apoptosis. In conclusion, our study indicated that Puerarin 6″-O-xyloside decreased cell viability, proliferation, and stemness, and promoted autophagy and mitochondria-dependent apoptosis of HCC, at least partly through inhibiting PI3K/AKT/mTOR. These results highlighted Puerarin 6″-O-xyloside as a promising prodrug that could inhibit both PI3K/AKT/mTOR and epigenetic demethylation.
Collapse
Affiliation(s)
- Long Li
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Jun‐Dong Liu
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Guo‐Dong Gao
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Kai Zhang
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Yu‐Wei Song
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| | - Hong‐Bo Li
- Department of General SurgeryPeople's Hospital of RizhaoRizhaoShandong ProvinceChina
| |
Collapse
|
9
|
Murahari M, Singh V, Chaubey P, Suvarna V. A Critical Review on Anticancer Mechanisms of Natural Flavonoid Puerarin. Anticancer Agents Med Chem 2020; 20:678-686. [PMID: 32106804 DOI: 10.2174/1871520620666200227091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 01/29/2023]
Abstract
Cancer is one of the prominent global causes of death and the foremost worldwide health concern. Despite unprecedented progress in cancer chemoprevention, a vast number of cancers, however, remain an undefeatable challenge for treatment modalities. Immense therapeutic activities of puerarin contribute to its use in various health disorders. In this review, we explored the potential molecular mechanisms and targets of puerarin, proving its potential as a novel anticancer agent, for future cancer therapy and chemoprevention. Several mechanisms account for anticancer activity of puerarin which includes downregulation of NF-kB signalling pathway, mTOR signalling pathway, PI3K and BCl-2 proteins and upregulation of miR-16, caspase proteins, c- Jun N terminal kinase and extracellular signal-regulated kinase 1/2. These alterations result in inhibition of cancer cell proliferation and/or induction of apoptosis. Understanding the molecular mechanisms involved in chemotherapy and chemoprevention could aid in the more pronounced exploration of puerarin in effective cancer treatment.
Collapse
Affiliation(s)
- Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Vikas Singh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
10
|
Cui XL, Li KJ, Ren HX, Zhang YJ, Liu XD, Bu BG, Wang L. Extract of Cycas revoluta Thunb. enhances the inhibitory effect of 5-fluorouracil on gastric cancer cells through the AKT-mTOR pathway. World J Gastroenterol 2019; 25:1854-1864. [PMID: 31057299 PMCID: PMC6478614 DOI: 10.3748/wjg.v25.i15.1854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common and deadly malignancies worldwide. Despite recent medical progress, the 5-year survival rate of gastric cancer is still unsatisfactory. 5-fluorouracil (5-Fu) is one of the first-line antineoplastic treatments for gastric cancer, as it can effectively induce cancer cell apoptosis. However, the effect of 5-Fu is limited due to drug resistance of the malignant tumor. Previous studies have reported that Sotetsuflavone from Cycas revoluta Thunb. can markedly suppress lung cancer cell proliferation by apoptosis, though its effect on gastric cancer remains unknown.
AIM To investigate the inhibitory effect of Cycas revoluta Thunb. and to determine whether it can overcome gastric cancer cell drug resistance to 5-Fu.
METHODS Cell viability was examined to determine whether the natural extract of Cycas revoluta Thunb. induced gastric cancer cell death. The half-maximal effective concentration and the half-maximal lethal concentration were calculatede. Wound-healing and transwell assays were performed to examine gastric cancer cell motility. Clonogenic assays were performed to investigate the synergistic effects of Cycas revoluta Thunb. with 5-Fu, and apoptotic bodies were detected by Hoechst staining. Western blotting was performed to examine the expression of related proteins and to investigate the molecular mechanism of Cycas revoluta Thunb.-induced cancer cell apoptosis. The expressions of proteins, including mammalian target of rapamycin (mTOR) and p-AKT, were detected in different combinations of treatments for 48 h, then analyzed by ECL detection.
RESULTS Gastric cancer cells were more sensitive to the natural extract of Cycas revoluta Thunb. compared to normal gastric epithelial cells, and the extract effectively inhibited gastric cancer cell migration and invasion. The extract improved the anti-cancer effect of 5-Fu by enhancing the chemosensitization of gastric cancer cells. Extract plus 5-Fu further reduced the expression of the drug-resistance-related proteins p-AKT and mTOR after 48 h compared to 5-Fu alone. Compared to 5-Fu treatment alone, mTOR and p-AKT expression was significantly reduced by about 50% and 75%, respectively. We also found that the natural extract of Cycas revoluta Thunb. further increased 5-Fu-induced gastric cancer cell apoptosis. Expression of apoptosis-related protein X-linked inhibitor of apoptosis protein and apoptosis inducing factor were significantly reduced and increased, respectively, in the 5-Fu-resistant gastric cancer line SGC-7901/R treated with extract plus 5-Fu, while the expression of survivin did not change.
CONCLUSION The natural extract of Cycas revoluta Thunb. effectively inhibited gastric cancer cell growth and enhanced the anti-cancer effect of 5-Fu through the AKT-mTOR pathway.
Collapse
Affiliation(s)
- Xing-Liang Cui
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Ke-Ji Li
- Department of Surgery, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Hai-Xia Ren
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Yong-Jian Zhang
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Xiao-Dong Liu
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Bao-Guo Bu
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056001, Hebei Province, China
| | - Lei Wang
- Department of Pathology, Medical College of Hebei University of Engineering, Handan 056000, Hebei Province, China
| |
Collapse
|
11
|
Zhang S, Wang J, Zhao H, Luo Y. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ 2018; 4:174-184. [PMID: 30693344 PMCID: PMC6329217 DOI: 10.4103/bc.bc_13_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
As the worldwide population ages, the morbidity of neurodegenerative, cardiovascular, cerebrovascular, and endocrine diseases, such as diabetes and osteoporosis, continues to increase. The etiology of geriatric diseases is complex, involving the interaction of genes and the environment, which makes effective treatment challenging. Traditional Chinese medicine, unlike Western medicine, uses diverse bioactive ingredients to target multiple signaling pathways in geriatric diseases. Radix puerariae is one of the most widely used ancient traditional Chinese medicines and is also consumed as food. This review summarizes the evidence from in vivo and in vitro studies of the pharmacological effects of the main active components of the tuber of Radix puerariae on geriatric diseases.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haiping Zhao
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Yumin Luo
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
12
|
Ye G, Kan S, Chen J, Lu X. Puerarin in inducing apoptosis of bladder cancer cells through inhibiting SIRT1/p53 pathway. Oncol Lett 2018; 17:195-200. [PMID: 30655755 PMCID: PMC6313105 DOI: 10.3892/ol.2018.9600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Regulatory effect of puerarin on bladder cancer T24-cell apoptosis and its possible mechanism were investigated. The experimental subjects were divided into the experimental group, the control group and the blank control group, and the cell inhibition rates after treatment were detected, respectively. Then, subjects were further divided into the control group, the puerarin group (treated with puerarin), the agonist group [treated with silent information regulator 1 (SIRT1) agonist SRT1720], the inhibitor group (treated with SIRT1 inhibitor EX527) and the combination group (treated with SRT1720, and then with puerarin). Apoptosis in each group was detected via flow cytometry, and the expression of apoptosis-related proteins, and SIRT1 and p53 proteins in each group was detected via western blotting. Moreover, the expression of SIRT1 and p53 messenger ribonucleic acid (mRNA) was detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The inhibition rate of bladder cancer T24 cells was significantly increased after treatment with puerarin at different concentrations. Compared with those in the normal control group, the inhibition rates at 24, 48 and 72 h after treatment with puerarin were significantly increased (p<0.05). Compared with those in the control group, the apoptosis rate of T24 cells was remarkably increased after treatment with different doses of puerarin or EX527, and the expression level of apoptosis-related protein Bcl-2-associated X protein (Bax) was also significantly increased, but the expression level of B-cell lymphoma 2 (Bcl-2) was decreased, and both the protein and mRNA expression levels of SIRT1 and p53 also significantly declined. Compared with those in the puerarin group, the apoptosis rate in the combination group was decreased, and the expression level of apoptosis-related protein Bax was also significantly decreased, but the expression level of Bcl-2 was increased, and SIRT1 and p53 protein expression levels were also remarkably increased. Puerarin can inhibit the proliferation of bladder cancer T24 cells and induce apoptosis, and the possible mechanism is related to the inhibition of SIRT1/p53 signaling pathway.
Collapse
Affiliation(s)
- Guomei Ye
- Department of Urinary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Shifeng Kan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianfeng Chen
- Blood Center of Shandong Province, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xin Lu
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
13
|
Liu Y, Li X, Jiang S, Ge Q. Inhibitory effect of Gypsophila oldhamiana gypsogenin on NCI-N87 gastric cancer cell line. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218818958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer is one of the major cancers threatening people’s lives worldwide. Recent studies showed that Gypsophila oldhamiana gypsogenin (GOG) exhibits inhibition effects and cytotoxic activities against different cell lines. The aim of this study was to explore the inhibitory effect and dose response of GOG on gastric cancer cell line NCI-N87 and to provide the theoretical basis for clinical anti-tumor therapy. The experiments showed that GOG could inhibit the proliferation and promote the apoptosis of human gastric cancer cell line NCI-N87. GOG could dose dependently reduce the expression of vascular endothelial growth factor (VEGF) and matrix metalloprotein (MMP)-9 proteins, while increase the expression of caspase-3 and Bax proteins. Compared with model group, tumor volume (TV), relative tumor volume (RTV), and relative tumor increment rate (T/C) in the mid-dose and high-dose GOG groups were significantly reduced, and the inhibition rate (IR) in the two groups was significantly increased. The results indicated that the anti-tumor effect of GOG on gastric cancer cells may be related with the downregulation of caspase-3 and Bax and the upregulation of MMP-9 and VEGF.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Pharmacy, Yantaishan Hospital, Yantai, China
| | - Xu Li
- Department of Pharmacy, Yantai Infectious Disease Hospital, Yantai, China
| | - Shanling Jiang
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Quanli Ge
- Department of Pharmacy, Yantaishan Hospital, Yantai, China
| |
Collapse
|
14
|
Jiang K, Chen H, Tang K, Guan W, Zhou H, Guo X, Chen Z, Ye Z, Xu H. Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway. Oncol Lett 2017; 15:167-174. [PMID: 29375709 PMCID: PMC5766064 DOI: 10.3892/ol.2017.7298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/22/2017] [Indexed: 12/23/2022] Open
Abstract
Puerarin, as a novel oncotherapeutic agent, may exert anticancer effects and inhibit the proliferation of cancer cells. To explore the effects of puerarin on human bladder cancer cells, and to elucidate the potential mechanism underlying these effects, a Cell Counting Kit-8 assay was used to examine the proliferation of T24 and EJ cells following puerarin treatment. The effects of puerarin treatment on the cell cycle were detected by flow cytometry (FCM), while puerarin-induced cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and FCM, and the cellular ultrastructural morphological changes were observed by transmission electron microscopy. Cell invasion was examined using a Transwell assay with Matrigel. The expression levels of mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, p70-S6 kinase (p70S6K) and p-p70S6K proteins in the mTOR signaling pathway were then assessed by western blotting. The results demonstrated that puerarin may inhibit bladder cancer cell viability, block the cell cycle in the G0/G1 phase and induce apoptosis in bladder cancer cells. The expression levels of p-mTOR and p-p70S6K proteins were downregulated, while no change was observed in the expression levels of mTOR and p70S6K proteins when T-24 and EJ cells were treated by puerarin. In the present study, puerarin was demonstrated to inhibit the viability of human bladder cancer cells. These effects may be due to the puerarin-induced downregulation of proteins in the mTOR/p70S6K signaling pathway, and the present study may provide the experimental basis for puerarin to be considered as a promising novel anti-tumor drug for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Hongbo Chen
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
15
|
Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food Chem Toxicol 2017; 107:572-580. [DOI: 10.1016/j.fct.2017.03.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/22/2023]
|
16
|
Suzuki N, Nakagawa F, Takechi T. Trifluridine/tipiracil increases survival rates in peritoneal dissemination mouse models of human colorectal and gastric cancer. Oncol Lett 2017; 14:639-646. [PMID: 28693216 PMCID: PMC5494646 DOI: 10.3892/ol.2017.6258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/07/2017] [Indexed: 01/15/2023] Open
Abstract
A number of patients exhibit peritoneal dissemination of gastric or colorectal cancer, which is a predominant cause of cancer-associated mortality. Currently, there is no markedly effective treatment available. The present study was designed to determine the efficacy of trifluridine/tipiracil (TFTD), formerly known as TAS-102, which is used for the treatment of patients with unresectable advanced or recurrent colorectal cancer refractory to standard therapies. Four colorectal cancer cell lines and one gastric cancer cell line were intraperitoneally inoculated into nude mice, as models of peritoneal dissemination. TFTD (200 mg/kg/day) was orally administered for 5 consecutive days followed by 2 drug-free days for 6 weeks. The increase in the lifespan (ILS) of the TFTD-treated mice compared with that of the drug-free control mice was 66.7, 43.3, 106.3, 98.3 and 133.3% for DLD-1, DLD-1/5-fluorouracil [5-fluorouracil (5FU)-resistant subline of DLD-1], HT-29 and HCT116 colorectal cancer cell lines, and MKN45 gastric cancer cell line, respectively. This ILS was similar to that of the irinotecan-treated mice (ILS, 70–84%), but was significantly (P<0.05) increased compared with that of the 5FU-, tegafur, gimeracil and potassium oxonate- and cisplatin-treated mice (ILS, 1–53%, 0.8–60% and 85%, respectively). No significant increase in body weight loss was observed during the dosing periods with any of the drugs used. The increase in CEA levels with progressive peritoneal dissemination was inhibited by TFTD treatment. TFTD also exhibited marked anticancer effects against Kirsten rat sarcoma viral oncogene homolog-mutated tumors and 5FU-resistant tumors. The results of the present study indicate that TFTD may be a potential drug against peritoneal dissemination of colorectal and/or gastric cancer in humans and may be utilized for chemo-naïve tumors and recurrent tumors following 5FU treatment.
Collapse
Affiliation(s)
- Norihiko Suzuki
- Translational Research Laboratory, Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., Tokushima 771-0194, Japan
| | - Fumio Nakagawa
- Applied Pharmacology Laboratory, Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., Tokushima 771-0194, Japan
| | - Teiji Takechi
- Translational Research Laboratory, Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., Tokushima 771-0194, Japan
| |
Collapse
|
17
|
Kang H, Zhang J, Wang B, Liu M, Zhao J, Yang M, Li Y. Puerarin inhibits M2 polarization and metastasis of tumor-associated macrophages from NSCLC xenograft model via inactivating MEK/ERK 1/2 pathway. Int J Oncol 2017; 50:545-554. [DOI: 10.3892/ijo.2017.3841] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/09/2016] [Indexed: 11/05/2022] Open
|
18
|
Wang L, Zhang Y, Wu X, Yu G. Aquaporins: New Targets for Cancer Therapy. Technol Cancer Res Treat 2015; 15:821-828. [PMID: 26438607 DOI: 10.1177/1533034615607693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
Aquaporins are a family of integral membrane proteins that are expressed in all living organisms and play vital roles in transcellular and transepithelial water movement. Cell viability and motility are critical for progression of cancer. Cell survival requires the suitable concentration of water and solutes. The balance is largely maintained by aquaporins whose major function is the transport of water and small solutes across the plasma membrane. The important role of aquaporins has received more and more attention in the recent years. A number of recent studies have revealed that aquaporins may be involved in cell migration and angiogenesis. This review will highlight the expression of aquaporins in different malignant neoplasms. Remarkably, we will summarize the influence of drugs on aquaporins, not only the traditional Chinese medicine but also the Western medicine. Therapeutic targeting of aquaporins may thus be advantageous for blocking the mechanism common for a number of key cancer phenotypes.
Collapse
Affiliation(s)
- Liping Wang
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| | - Yixiang Zhang
- Respiratory Medicine Department, Second People's Hospital of Weifang, Kuiwen, Weifang, China
| | - Xiongzhi Wu
- Patient Department, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Guohua Yu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| |
Collapse
|