1
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
4
|
Bai H, Chang Y, Li B, Mao Y, Jonas JB. Effects of lentivirus-mediated astrocyte elevated gene-1 overexpression on proliferation and apoptosis of human retinoblastoma cells. Acta Ophthalmol 2019; 97:e397-e402. [PMID: 30694025 DOI: 10.1111/aos.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the effect of astrocyte elevated gene-1 (AEG-1) overexpression on the biological behaviour of human retinoblastoma (RB) cells and its possible mechanism. METHODS Three human RB cell lines (SO-RB50, Y79 and WERI-RB1) were infected with AEG-1-GFP recombinant lentiviral vectors to induce AEG-1 overexpression, while the cells infected with negative lentiviral vectors and cells without any intervention formed control groups. RESULTS All three RB cell lines showed an overexpression of AEG-1 after lentivirus infection (p < 0.001 for all three cell lines). The survival rate of RB cells increased (all p < 0.001) in the AEG-1 overexpressed groups when compared with the control groups. There was a decrease in G0/G1 cell cycle phase arrest and an accumulation in G2/M cell cycle phase in all three RB cell lines (p < 0.001), with an induction in the S phase in WERI-RB1 cells. It was paralleled by a downregulation of p21 and p27 proteins and an upregulation of the Cdc2 protein. The apoptosis rate of RB cells declined (p < 0.001) when AEG-1 was overexpressed, in association with an upregulation of Bcl-2 protein and a downregulation of Bax protein and cleaved caspase-3 proteins. CONCLUSIONS A lentivirus-mediated AEG-1 overexpression in RB cells led in vitro to a growth promotion and an apoptosis inhibition of human RB cells, associated with an upregulation of the Bcl-2 protein, a downregulation of the Bax protein and of cleaved caspase-3 proteins, and with alterations of the cell cycle. AEG-1 may be involved in the development and progression of RB.
Collapse
Affiliation(s)
- Haixia Bai
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Ying Chang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
- Department of Ophthalmology; Shanxi Eye Hospital; Taiyuan Shanxi China
| | - Bin Li
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Ying Mao
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Ophthalmology & Visual Sciences Key Laboratory; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jost B. Jonas
- Department of Ophthalmology; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
5
|
Chen J, Jia Y, Jia ZH, Zhu Y, Jin YM. Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol 2018; 53:2180-2190. [PMID: 30226587 DOI: 10.3892/ijo.2018.4541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/12/2018] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has a high mortality rate among women worldwide. Radiotherapy is considered an effective method of ovarian cancer treatment, however, radioresistance presents a challenge. It is necessary to develop techniques that can increase radiosensitivity in ovarian cancer, and gene therapy is a promising option. The aim of the present study was to investigate the effects of metadherin (MTDH) silencing on the radiosensitivity of ovarian cancer. Ovarian cancer tissues (n=273) and normal ovarian tissues (n=277) were used, as were SKOV3 ovarian cancer cells and the immortalized human ovarian epidermal HOSEpiC cell line. MTT, Transwell and wound-healing assays were performed to assess the proliferation, invasion and migration abilities of the SKOV3 cells. Colony-forming assays and flow cytometry were applied to detect the radiosensitivity and apoptosis of the SKOV3 cells. Nude mouse xenograft models were established to evaluate the effect of MTDH gene silencing on tumor growth and the efficacy of radiotherapy. Ovarian cancer, in tissues and cells, was demonstrated to have a high level of MTDH. Additionally, MTDH silencing was found to significantly inhibit proliferation, migration and invasion, and induce apoptosis in SKOV3 cells, and it was suggested that MTDH depletion significantly increased the sensitivity of the SKOV3 cells to X-ray radiation. MTDH silencing enhanced radiosensitivity and delayed tumor growth in the nude mouse xenograft model. Collectively, the results obtained in the present study suggest the potential role of MTDH silencing as a technique for ameliorating radioresistance in ovarian cancer. The present study provides a promising experimental basis for the improvement of ovarian cancer radiotherapy treatment.
Collapse
Affiliation(s)
- Jun Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zan-Hui Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yu Zhu
- Department of Ophthalmology, FAW General Hospital, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
6
|
Feng S, Yao J, Zhang Z, Zhang Y, Zhang Z, Liu J, Tan W, Sun C, Chen L, Yu X. miR‑96 inhibits EMT by targeting AEG‑1 in glioblastoma cancer cells. Mol Med Rep 2017; 17:2964-2972. [PMID: 29257267 PMCID: PMC5783515 DOI: 10.3892/mmr.2017.8227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
The induction of epithelial to mesenchymal transition (EMT) is important for carcinogenesis and cancer progression. Previous studies have estimated that microRNA (miRNA/miR) expression is associated with EMT via the regulation of the expression of target genes. miR-96 has been reported to exhibit a correlation with the EMT process. However, the functional role of miR-96 and its mechanism in glioblastoma multiforme (GBM) remains to be completely elucidated. The objective of the present study was to investigate the functional role and mechanism of miR-96 in the migration and invasion, in addition to proliferation, apoptosis and cell cycle distribution, of GBM. In the present study, the results suggested that the introduction of miR-96 significantly inhibited the migration and invasion, in addition to proliferation and cell cycle progression, of GBM cells and promoted their apoptosis in vitro, leading to the hypothesis that miR-96 may be a potential tumor suppressor. It was subsequently confirmed that astrocyte elevated gene-1 (AEG-1) was a direct target gene of miR-96, using a luciferase assay and reverse transcription-quantitative polymerase chain reaction analysis, in addition to western blotting. miR-96 was observed to downregulate the expression of AEG-1 at the mRNA and protein levels. Notably, AEG-1 may suppress EMT by increasing the expression levels of E-cadherin, an epithelial marker, and decreasing the expression levels of vimentin, a mesenchymal marker. Therefore, it was concluded that miR-96 may impede the EMT process by downregulating AEG-1 in GBM. Additionally, it was observed that inhibition of AEG-1 led to a similar effect compared with overexpression of miR-96 in GBM. In conclusion, the results of the present study demonstrated that miR-96 may act as a tumor suppressor by regulating EMT via targeting of AEG-1, suggesting that miR-96 may be a potential biomarker and anticancer therapeutic target for GBM in the future.
Collapse
Affiliation(s)
- Shiyu Feng
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Jie Yao
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Zhibin Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Jialin Liu
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Wenlong Tan
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Caihong Sun
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing 100036, P.R. China
| |
Collapse
|
7
|
Zhao T, Zhao C, Zhou Y, Zheng J, Gao S, Lu Y. HIF-1α binding to AEG-1 promoter induced upregulated AEG-1 expression associated with metastasis in ovarian cancer. Cancer Med 2017; 6:1072-1081. [PMID: 28401704 PMCID: PMC5430094 DOI: 10.1002/cam4.1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer with the highest mortality rate among gynecological malignancies is one of common cancers among female cancer patients. As reported in recent years, AEG‐1 was associated with the occurrence, development, and metastasis of ovarian cancer, but the mechanisms remain unclear. In the current study, invasion capabilities of ovarian cancer OVCAR3 cells were measured by viral infection and transwell assay. Western blot analysis was used to evaluate the expression levels of β‐catenin, E‐cadherin, MMP2, and MMP9. With qRT‐PCR analysis, AEG‐1 and HIF‐1α gene expression were detected. We used luciferase reporter gene to measure AEG‐1 promoter activity under normoxia/hypoxia in OVCAR3 cells. Our work demonstrated that AEG‐1 significantly enhanced invasion capabilities of OVCAR3 cells and the expression levels of β‐catenin, E‐cadherin, MMP2, and MMP9 associated with invasion capabilities of OVCAR3 cells were upregulated. Furthermore, hypoxia enhanced invasion capabilities of OVCAR3 cells and induced AEG‐1 high gene expression, which was reversed by AEG‐1 knockdown lentivirus. HIF‐1α expression upregulation was induced in OVCAR3 cells after hypoxia. HIF‐1α knockdown lentivirus induced downregulated expression of AEG‐1 and invasion capabilities of OVCAR3 cells were also inhibited. Wild‐type AEG‐1 promoter activity under hypoxic conditions was significantly higher than that AEG‐1 mutation under normoxic conditions in the absence of hypoxia response. Our results suggested that HIF‐1α binds to AEG‐1 promoter to upregulate its expression, which was correlated with metastasis in ovarian cancer by inducing the expression of MMP2 and MMP9 as well as inhibiting expression of E‐cadherin and β‐catenin.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenyan Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanting Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shujun Gao
- The Diagnosis and Treatment Center of Cervical Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yuan Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Hou Y, Yu L, Mi Y, Zhang J, Wang K, Hu L. Association of MTDH immunohistochemical expression with metastasis and prognosis in female reproduction malignancies: a systematic review and meta-analysis. Sci Rep 2016; 6:38365. [PMID: 27917902 PMCID: PMC5137005 DOI: 10.1038/srep38365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023] Open
Abstract
Various literatures have demonstrated that overexpression of Metadherin (MTDH) is correlated with tumor metastasis and it can predict poor survival outcomes in female reproduction malignancies. In order to enhance the statistical power and reach a recognized conclusion, we conducted a systematic review and meta-analysis to thoroughly investigate the association of MTDH expression with tumor metastasis and survival outcomes following PRISMA guidelines. Odds ratios (ORs) and hazard ratios (HRs) were used to demonstrate the impact of MTDH on tumor metastasis and prognosis respectively. Data were pooled with appropriate effects model on STATA12.0. Our results indicated that high MTDH expression is significantly correlated with higher mortality for breast, ovarian and cervical cancer. High immunohistochemical expression of MTDH is remarkably associated with shorter disease-free survival (DFS) in breast cancer but not in ovarian cancer. The pooled results suggested that high level of MTDH significantly predicted distant metastasis and lymph node metastasis in breast cancer. Strong associations were observed between MTDH expression and lymph node metastasis in ovarian and cervical cancer. In conclusion, MTDH might be a novel biomarker which can effectively reflect metastasis status and prognosis of breast cancer. However, its application in clinical practice needs more prospective studies with large samples.
Collapse
Affiliation(s)
- Yongbin Hou
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Lihua Yu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yonghua Mi
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jiwang Zhang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Ke Wang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Liyi Hu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.,Department of CIK treatment laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
9
|
Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, Bertozzi CR, Bachvarov D. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. J Proteomics 2016; 145:91-102. [PMID: 27095597 PMCID: PMC5436706 DOI: 10.1016/j.jprot.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 12/29/2022]
Abstract
UNLABELLED Epithelial ovarian cancer (EOC) is a disease responsible for more deaths among women in the Western world than all other gynecologic malignancies. There is urgent need for new therapeutic targets and a better understanding of EOC initiation and progression. We have previously identified the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) gene, a member of the GalNAc-transferases (GalNAc-Ts) gene family, as hypomethylated and overexpressed in high-grade serous EOC tumors, compared to low malignant potential EOC tumors and normal ovarian tissues. This data also suggested for a role of GALNT3 in aberrant EOC glycosylation, possibly implicated in disease progression. To evaluate differential glycosylation in EOC caused by modulations in GALNT3 expression, we used a metabolic labeling strategy for enrichment and mass spectrometry-based characterization of glycoproteins following GALNT3 gene knockdown (KD) in A2780s EOC cells. A total of 589 differentially expressed glycoproteins were identified upon GALNT3 KD. Most identified proteins were involved in mechanisms of cellular metabolic functions, post-translational modifications, and some have been reported to be implicated in EOC etiology. The GALNT3-dependent glycoproteins identified by this metabolic labeling approach support the oncogenic role of GALNT3 in EOC dissemination and may be pursued as novel EOC biomarkers and/or therapeutic targets. BIOLOGICAL SIGNIFICANCE Knowledge of the O-glycoproteome has been relatively elusive, and the functions of the individual polypeptide GalNAc-Ts have been poorly characterized. Alterations in GalNAc-Ts expression were shown to provide huge variability in the O-glycoproteome in various pathologies, including cancer. The application of a chemical biology approach for the metabolic labeling and subsequent characterization of O-glycoproteins in EOC using the Ac4GalNAz metabolite has provided a strategy allowing for proteomic discovery of GalNAc-Ts specific functions. Our study supports an essential role of one of the GalNAc-Ts - GALNT3, in EOC dissemination, including its implication in modulating PTMs and EOC metabolism. Our approach validates the use of the applied metabolic strategy to identify important functions of GalNAc-Ts in normal and pathological conditions.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, PQ, Canada
| | - Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | | | - Sylvie Bourassa
- Centre de recherche du CHU de Québec, CHUL, Québec, PQ, Canada
| | - Arnaud Droit
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, CHUL, Québec, PQ, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec, PQ, Canada; Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, PQ, Canada
| |
Collapse
|
10
|
Moore RF, Sholl AB, Kidd L, Al-Qurayshi Z, Tsumagari K, Emejulu OM, Kholmatov R, Friedlander P, Abd Elmageed ZY, Kandil E. Metadherin Expression is Associated with Extrathyroidal Extension in Papillary Thyroid Cancer Patients. Ann Surg Oncol 2016; 23:2883-8. [DOI: 10.1245/s10434-016-5245-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 12/13/2022]
|