1
|
Gene expression in the epileptic (EL) mouse hippocampus. Neurobiol Dis 2020; 147:105152. [PMID: 33153970 DOI: 10.1016/j.nbd.2020.105152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
Collapse
|
2
|
Lu Y, Mei Y, Chen L, Wu L, Wang X, Zhang Y, Fu B, Chen X, Xie Y, Cai G, Bai X, Li Q, Chen X. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis. Cell Mol Immunol 2018; 16:735-745. [PMID: 29568121 DOI: 10.1038/s41423-018-0020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
Mesangial proliferative glomerulonephritis (MsPGN) is an inflammatory disease, but both the nature of disease progression and its regulation remain unclear. In the present study, we monitored the course of anti-Thy1 nephritis from days 1 to 5 and established gene expression profiles at each time point using microarrays to explore the development of inflammation. According to the gene expression profiles, macrophage infiltration (triggered by CCL2 activation) was evident on day 1 and enhanced inflammation over the next few days. We screened for genes with expression levels similar to CCL2 and found that the upregulation of the circadian gene albumin D-site-binding protein (DBP) was involved in CCL2 activation in mesangial cells. More importantly, CCL2 expression showed oscillatory changes similar to DBP, and DBP induced peak CCL2 expression at 16:00 a clock on day 1 in the anti-Thy1 nephritis model. We knocked down DBP through transfection with a small interfering RNA (siRNA) and used RNA sequencing to identify the DBP-regulated TNF-α-CCL2 pathway. We performed chromatin immunoprecipitation sequencing (ChIP-Seq) and the dual luciferase assay to show that DBP bound to the TRIM55 promoter, regulating gene expression and in turn controlling the TNF-α-CCL2 pathway. In conclusion, DBP-regulated circadian CCL2 expression by the TRIM55-TNF pathway in injured mesangial cells at an early stage, which promoted macrophage recruitment and in turn triggered infiltration and inflammation in a model of anti-Thy1 nephritis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yan Mei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yingjie Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xizhao Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| |
Collapse
|