1
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Kittl M, Winklmayr M, Preishuber-Pflügl J, Strobl V, Gaisberger M, Ritter M, Jakab M. Low pH Attenuates Apoptosis by Suppressing the Volume-Sensitive Outwardly Rectifying (VSOR) Chloride Current in Chondrocytes. Front Cell Dev Biol 2022; 9:804105. [PMID: 35186954 PMCID: PMC8847443 DOI: 10.3389/fcell.2021.804105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
In a variety of physiological and pathophysiological conditions, cells are exposed to acidic environments. Severe synovial fluid acidification also occurs in a progressive state of osteoarthritis (OA) affecting articular chondrocytes. In prior studies extracellular acidification has been shown to protect cells from apoptosis but the underlying mechanisms remain elusive. In the present study, we demonstrate that the inhibition of Cl− currents plays a significant role in the antiapoptotic effect of acidification in human articular chondrocytes. Drug-induced apoptosis was analyzed after exposure to staurosporine by caspase 3/7 activity and by annexin-V/7-actinomycin D (7-AAD) staining, followed by flow cytometry. Cell viability was assessed by resazurin, CellTiter-Glo and CellTiter-Fluor assays. Cl− currents and the mean cell volume were determined using the whole cell patch clamp technique and the Coulter method, respectively. The results reveal that in C28/I2 cells extracellular acidification decreases caspase 3/7 activity, enhances cell viability following staurosporine treatment and gradually deactivates the volume-sensitive outwardly rectifying (VSOR) Cl− current. Furthermore, the regulatory volume decrease (RVD) as well as the apoptotic volume decrease (ADV), which represents an early event during apoptosis, were absent under acidic conditions after hypotonicity-induced cell swelling and staurosporine-induced apoptosis, respectively. Like acidosis, the VSOR Cl− current inhibitor DIDS rescued chondrocytes from apoptotic cell death and suppressed AVD after induction of apoptosis with staurosporine. Similar to acidosis and DIDS, the VSOR channel blockers NPPB, niflumic acid (NFA) and DCPIB attenuated the staurosporine-induced AVD. NPPB and NFA also suppressed staurosporine-induced caspase 3/7 activation, while DCPIB and Tamoxifen showed cytotoxic effects per se. From these data, we conclude that the deactivation of VSOR Cl− currents impairs cell volume regulation under acidic conditions, which is likely to play an important role in the survivability of human articular chondrocytes.
Collapse
Affiliation(s)
- Michael Kittl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- *Correspondence: Michael Kittl,
| | - Martina Winklmayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Victoria Strobl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology, Pathophysiology and Biophysics—Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Jakab
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| |
Collapse
|
3
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
4
|
Volume-regulated anion channel as a novel cancer therapeutic target. Int J Biol Macromol 2020; 159:570-576. [DOI: 10.1016/j.ijbiomac.2020.05.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 01/01/2023]
|
5
|
Cisplatin influences the skin ion transport - An in vitro study. Biomed Pharmacother 2020; 129:110502. [PMID: 32768977 DOI: 10.1016/j.biopha.2020.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022] Open
Abstract
Platinum-based drugs, used in treating tumors, cause numerous undesirable effects in patients, like neuropathic pain, hypersensitivity, reddening, pruritus and rash. Changes in Na+ transport modify local osmolality and contribute to the initiation of hypersensitivity and allergy. They are also associated with stimulation of C-fibres and hyperalgesia. Cl- transport is essential for regulation of sweat composition and the migration of immunocompetent cells. The aim of the conducted study was to assess the effect of a cisplatin solution on the electrophysiological parameters of the isolated rabbit skin specimens. The difference in transepithelial electrical potential (PD) and resistance (R) in stationary conditions and during 15 s mechanical-chemical stimulation (PDmin and PDmax), were measured. Measurement of R revealed that tissue samples were live, and their permeability to ions were stable. Control specimens had PD -0.22 mV (median). The PD of specimens treated by cisplatin was -0.55 mV (median), to for cisplatin and bumetanide 0 mV (median). Treatment with cisplatin did not change the continuous transport of Na+ and K+ ions, but did change that of Cl- ions. Stimulation of samples with the transport blockers of Cl-, Na+ and both induced repeatable and measurable reactions in the transport of the appropriate ions. It was shown that absorption of Na+ ions and release of Cl- ions was intensified than in the untreated specimens. It was proven in the study that cisplatin influences the Na+ and Cl- transport in the skin cells. Restoring the balance in ion flow can prevent side effects of use cisplatin-based drugs.
Collapse
|
6
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
7
|
Chen L, König B, Liu T, Pervaiz S, Razzaque YS, Stauber T. More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biol Chem 2019; 400:1481-1496. [DOI: 10.1515/hsz-2019-0189] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Abstract
The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.
Collapse
Affiliation(s)
- Lingye Chen
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Benjamin König
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tianbao Liu
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Sumaira Pervaiz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Yasmin S. Razzaque
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tobias Stauber
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| |
Collapse
|
8
|
Moon DK, Bae YJ, Jeong GR, Cho CH, Hwang SC. Upregulated TTYH2 expression is critical for the invasion and migration of U2OS human osteosarcoma cell lines. Biochem Biophys Res Commun 2019; 516:521-525. [PMID: 31230749 DOI: 10.1016/j.bbrc.2019.06.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Ion channels have recently emerged as stable biomarkers and anticancer targets particularly when the applications of the currently available therapeutic regimens are limited, as in case of osteosarcoma, a malignant bone tumor. Here, we evaluated the expression of TTYH2, a presumably calcium-activated chloride channel, in a human osteosarcoma cell line U2OS. We used small-interfering RNA (siRNA)-mediated gene silencing to demonstrate the downregulation in the expression of TTYH2 that resulted in the decrease in the invasion and migration, but not proliferation, of U2OS cells. The expression levels of Slug and ZEB1, the transcription factors involved in epithelial-mesenchymal transition, significantly reduced after TTYH2 silencing. Based on these results, we suggest that TTYH2 may serve as a novel target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Yeon Ju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Geuk-Rae Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Sun Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.
| |
Collapse
|
9
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Chen R, Huang LH, Gao YY, Yang JZ, Wang Y. Identification of differentially expressed genes in MG63 osteosarcoma cells with drug‑resistance by microarray analysis. Mol Med Rep 2018; 19:1571-1580. [PMID: 30569145 PMCID: PMC6390052 DOI: 10.3892/mmr.2018.9774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor, with extremely poor prognosis in patients with metastatic disease and resistance to therapy, such as multidrug regimens. The mechanisms of drug resistance are quite complex and have not been fully elucidated; thus, novel therapeutic targets should be identified to alleviate drug resistance in osteosarcoma. In the present study, the transcriptomes of the human osteosarcoma cell line MG63 and vincristine (VCR)-resistant MG63 cells were compared by microarray analysis. A total of 1,300 genes (602 upregulated and 698 downregulated) were reported to be differentially expressed in MG63/VCR compared with MG63 cells. Bioinformatics analysis predicted that the differentially expressed genes were mainly enriched in the B cell receptor, UVA-induced mitogen-activated protein kinases and receptor tyrosine kinase 2/3 signaling pathways. In the present study, 10 of the dysregulated genes, including roundabout homolog 1, death-associated protein kinase 1 and A-kinase anchor protein 12 were further evaluated by reverse transcription-quantitative polymerase chain reaction. These results may aid the validation of candidate biomarkers for the treatment and prognosis of osteosarcoma, and provide novel insight into the molecular mechanisms underlying the drug resistance of osteosarcoma cells.
Collapse
Affiliation(s)
- Rui Chen
- Department of Nuclear Medicine; Changhai Hospital of Shanghai, Shanghai 200433, P.R. China
| | - Li-Hong Huang
- Geriatric Department, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yi-Yao Gao
- Science Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Jian-Zeng Yang
- Henan Medical Key Laboratory of Molecular Imaging, Nuclear Medicine Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yan Wang
- Science Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| |
Collapse
|
11
|
Ji F, Lv R, Zhao T. A correlation analysis between tumor imaging changes and p-AKT and HSP70 expression in tumor cells after osteosarcoma chemotherapy. Oncol Lett 2017; 14:6749-6753. [PMID: 29151914 PMCID: PMC5678351 DOI: 10.3892/ol.2017.7005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
This study sought to investigate osteosarcoma property changes after neoadjuvant chemotherapy and to analyze any correlation between changes with phospho-AKT (p-AKT) and heat shock protein 70 (HSP70) expression in osteosarcoma cells. Thirty patients with osteosarcoma treated at Liaocheng People's Hospital between January and October, 2016 were given an imaging examination before and after neoadjuvant chemotherapy to examine osteosarcoma tumor properties, with images scored. Immunohistochemistry was used to determine p-AKT and HSP70 expression levels, as well as tumor cell necrosis rate (TCNR), in specimens obtained before and after chemotherapy. The correlation between the imaging changes of osteosarcoma after chemotherapy and the expressions of p-AKT and HSP70 in tumor cells. Compared with pre-chemotherapy, the imaging scores of the 30 patients significantly increased after chemotherapy (P<0.05). The radiographic score of the TCNR ≥90% group was 11.3±0.5, which was significantly higher than that of the TCNR <90% group (8.7±0.3, P<0.05). p-AKT expression in osteosarcoma cells was found in 13.3% of samples (4/30 cases) after chemotherapy, which was significantly lower than prior to chemotherapy (73.3%, 22/30 cases, P<0.05). After chemotherapy, HSP70 expression in osteosarcoma cells was found in 6.7% of samples (2/30 cases), which was significantly lower than prior to chemotherapy (83.3%, 25/30 cases, P<0.05). p-AKT and HSP70 expression levels were found to be correlated with TCNR after chemotherapy (P<0.05). After chemotherapy, p-AKT and HSP70 expression levels demonstrated a positive correlation with TCNR. Tumor property changes, as uncovered by imaging, were significantly inversely correlated with tumor cell p-AKT and HSP70 expression after chemotherapy. Therefore, osteosarcoma properties, as determined through X-ray imaging, were closely related to p-AKT and HSP70 expression in osteosarcoma cells after neoadjuvant chemotherapy. The effect of chemotherapy can be evaluated by observing the above examination results.
Collapse
Affiliation(s)
- Feng Ji
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ran Lv
- Department of Medical Oncology, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ting Zhao
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
12
|
Wang X, Zheng H, Shou T, Tang C, Miao K, Wang P. Effectiveness of multi-drug regimen chemotherapy treatment in osteosarcoma patients: a network meta-analysis of randomized controlled trials. J Orthop Surg Res 2017; 12:52. [PMID: 28356114 PMCID: PMC5372345 DOI: 10.1186/s13018-017-0544-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma is the most common malignant bone tumour. Due to the high metastasis rate and drug resistance of this disease, multi-drug regimens are necessary to control tumour cells at various stages of the cell cycle, eliminate local or distant micrometastases, and reduce the emergence of drug-resistant cells. Many adjuvant chemotherapy protocols have shown different efficacies and controversial results. Therefore, we classified the types of drugs used for adjuvant chemotherapy and evaluated the differences between single- and multi-drug chemotherapy regimens using network meta-analysis. Methods We searched electronic databases, including PubMed (MEDLINE), EmBase, and the Cochrane Library, through November 2016 using the keywords “osteosarcoma”, “osteogenic sarcoma”, “chemotherapy”, and “random*” without language restrictions. The major outcome in the present analysis was progression-free survival (PFS), and the secondary outcome was overall survival (OS). We used a random effect network meta-analysis for mixed multiple treatment comparisons. Results We included 23 articles assessing a total of 5742 patients in the present systematic review. The analysis of PFS indicated that the T12 protocol (including adriamycin, bleomycin, cyclophosphamide, dactinomycin, methotrexate, cisplatin) plays a more critical role in osteosarcoma treatment (surface under the cumulative ranking (SUCRA) probability 76.9%), with a better effect on prolonging the PFS of patients when combined with ifosfamide (94.1%) or vincristine (81.9%). For the analysis of OS, we separated the regimens to two groups, reflecting the disconnection. The T12 protocol plus vincristine (94.7%) or the removal of cisplatinum (89.4%) is most likely the best regimen. Conclusions We concluded that multi-drug regimens have a better effect on prolonging the PFS and OS of osteosarcoma patients, and the T12 protocol has a better effect on prolonging the PFS of osteosarcoma patients, particularly in combination with ifosfamide or vincristine. The OS analysis showed that the T12 protocol plus vincristine or the T12 protocol with the removal of cisplatinum might be a better regimen for improving the OS of patients. However, well-designed randomized controlled trials of chemotherapeutic protocols are still necessary. Electronic supplementary material The online version of this article (doi:10.1186/s13018-017-0544-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Hong Zheng
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Tao Shou
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Chunming Tang
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Kun Miao
- Department of Medical Oncology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ping Wang
- Department of Thoracic Surgery, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032, Yunnan Province, China.
| |
Collapse
|
13
|
Koohi Moftakhari Esfahani M, Alavi SE, Shahbazian S, Ebrahimi Shahmabadi H. Drug Delivery of Cisplatin to Breast Cancer by Polybutylcyanoacrylate Nanoparticles. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Seyed Ebrahim Alavi
- Department of Pilot Nanobiotechnology; Pasteur Institute of Iran; Tehran Iran
| | - Shahedeh Shahbazian
- Department of Agricultural Biotechnology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology; School of Medicine; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| |
Collapse
|
14
|
Sørensen BH, Nielsen D, Thorsteinsdottir UA, Hoffmann EK, Lambert IH. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation. Am J Physiol Cell Physiol 2016; 310:C857-73. [PMID: 26984736 PMCID: PMC4935196 DOI: 10.1152/ajpcell.00256.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022]
Abstract
The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A.
Collapse
Affiliation(s)
- Belinda Halling Sørensen
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Nielsen
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Unnur Arna Thorsteinsdottir
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Else Kay Hoffmann
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Ian Henry Lambert
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Liu LI, Cai S, Qiu G, Lin J. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel. Biomed Rep 2016; 4:408-412. [PMID: 27073622 DOI: 10.3892/br.2016.595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022] Open
Abstract
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity.
Collapse
Affiliation(s)
- L I Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jin Lin
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
16
|
Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 2015; 34:2993-3008. [PMID: 26530471 PMCID: PMC4687416 DOI: 10.15252/embj.201592409] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Darius Lutter
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nora M Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Florian Ullrich
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Deborah A Elger
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Asli Kucukosmanoglu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guotai Xu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Felizia K Voss
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - S Momsen Reincke
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Vincent A Blomen
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|