1
|
Jou E, Chaudhury N, Nasim F. Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:187-207. [PMID: 38464388 PMCID: PMC10918238 DOI: 10.37349/etat.2024.00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/10/2023] [Indexed: 03/12/2024] Open
Abstract
Cancer is the leading cause of death globally superseded only by cardiovascular diseases, and novel strategies to overcome therapeutic resistance against existing cancer treatments are urgently required. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with potent immunosuppressive capacity against well-established anti-tumour effectors such as natural killer cells (NK cells) and T cells thereby promoting cancer initiation and progression. Critically, MDSCs are readily identified in almost all tumour types and human cancer patients, and numerous studies in the past decade have recognised their role in contributing to therapeutic resistance against all four pillars of modern cancer treatment, namely surgery, chemotherapy, radiotherapy and immunotherapy. MDSCs suppress anti-tumour immunity through a plethora of mechanisms including the well-characterised arginase 1 (Arg1), inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS)-mediated pathways, along with several other more recently discovered. MDSCs are largely absent in healthy homeostatic states and predominantly exist in pathological conditions, making them attractive therapeutic targets. However, the lack of specific markers identified for MDSCs to date greatly hindered therapeutic development, and currently there are no clinically approved drugs that specifically target MDSCs. Methods to deplete MDSCs clinically and inhibit their immunosuppressive function will be crucial in advancing cancer treatment and to overcome treatment resistance. This review provides a detailed overview of the current understandings behind the mechanisms of MDSC-mediated suppression of anti-tumour immunity, and discusses potential strategies to target MDSC immunosuppressive mechanisms to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Eric Jou
- Medical Sciences Division, Oxford University Hospitals, University of Oxford, OX3 9DU Oxford, UK
- Kellogg College, University of Oxford, OX2 6PN Oxford, UK
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, UK
| | - Natasha Chaudhury
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, UK
| | - Fizza Nasim
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, SL2 4HL Slough, UK
| |
Collapse
|
2
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
3
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
4
|
Busà R, Bulati M, Badami E, Zito G, Maresca DC, Conaldi PG, Ercolano G, Ianaro A. Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Front Cell Dev Biol 2022; 10:907572. [PMID: 35757002 PMCID: PMC9221069 DOI: 10.3389/fcell.2022.907572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer immunotherapy has led to impressive advances in cancer treatment. Unfortunately, in a high percentage of patients is difficult to consistently restore immune responses to eradicate established tumors. It is well accepted that adaptive immune cells, such as B lymphocytes, CD4+ helper T lymphocytes, and CD8+ cytotoxic T-lymphocytes (CTLs), are the most effective cells able to eliminate tumors. However, it has been recently reported that innate immune cells, including natural killer cells (NK), dendritic cells (DC), macrophages, myeloid-derived suppressor cells (MDSCs), and innate lymphoid cells (ILCs), represent important contributors to modulating the tumor microenvironment and shaping the adaptive tumor response. In fact, their role as a bridge to adaptive immunity, make them an attractive therapeutic target for cancer treatment. Here, we provide a comprehensive overview of the pleiotropic role of tissue-resident innate immune cells in different tumor contexts. In addition, we discuss how current and future therapeutic approaches targeting innate immune cells sustain the adaptive immune system in order to improve the efficacy of current tumor immunotherapies.
Collapse
Affiliation(s)
- Rosalia Busà
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Ester Badami
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- *Correspondence: Giuseppe Ercolano,
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
6
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 2020; 10:200111. [PMID: 32931721 PMCID: PMC7536076 DOI: 10.1098/rsob.200111] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation and inflammation are unwanted consequences of many pathological conditions, since they could lead to tissue damage and immune exhaustion, both of which can worsen the pathological condition status. In fact, the immune system is naturally equipped with immunoregulatory cells that can limit immune activation and inflammation. However, chronic activation of downregulatory immune responses is also associated with unwanted consequences that, in turn, could lead to disease progression as seen in the case of cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are now considered to play a pivotal role in the pathogenesis of different inflammatory pathological conditions, including different types of cancer and chronic infections. As a potent immunosuppressor cell population, MDSCs can inhibit specific and non-specific immune responses via different mechanisms that, in turn, lead to disease persistence. One such mechanism by which MDSCs can activate their immunosuppressive effects is accomplished by secreting copious amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In this article, we will focus on the pathological role of MDSC expansion in chronic inflammatory conditions including cancer, sepsis/infection, autoimmunity, asthma and ageing, as well as some of the mechanisms by which MDSCs/IL-10 contribute to the disease progression in such conditions.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
7
|
Serum CXCL13 and PECAM-1 can be used as diagnostic and prognostic markers in elderly patients with gastric cancer. Clin Transl Oncol 2020; 23:130-138. [PMID: 32500259 DOI: 10.1007/s12094-020-02403-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the application value of serum CXC Chemokine-13 (CXCL-13) and platelet endothelial cell adhesion molecule-1 (PECAM-1) in elderly patients with gastric cancer (GC). METHODS Ninety-eight elderly GC patients admitted to the Affiliated Hexian Memorial Hospital of Southern Medical University were selected as a research group, and 60 healthy subjects of the same age and in relatively good health who underwent physical examination at the same period were selected as a control group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of CXCL13 and PECAM-1 in serum. The clinical diagnosis and prognostic value of serum CXCL13 and PECAM-1 in elderly GC patients were analyzed. RESULTS The levels of CXCL13 and PECAM-1 in serum of the research group were significantly higher than those of the control group (P < 0.001). The AUC value of combined diagnosis of elderly GC patients by serum CXCL13 and PECAM-1 was 0.950, and that of combined evaluation of prognosis of patients was 0.849. Serum CXCL13 and PECAM-1 were significantly related to TNM staging, differentiation degree and tumor diameter in elderly GC patients (P < 0.05). High levels of CXCL13 and PECAM-1 were significantly associated with lower 5-year OS (P < 0.05). CONCLUSION Elderly GC patients with higher TNM staging, longer tumor diameters, high levels of CXCL13 and PECAM-1 had an increased risk of poor prognosis. Serum CXCL13 and PECAM-1 can be used as effective indicators for diagnosis and prognosis of elderly patients with GC, and can predict the 5-year OS in patients.
Collapse
|
8
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were mainly immature and monocytic Myeloid-derived suppressor cells. Sci Rep 2020; 10:8056. [PMID: 32415175 PMCID: PMC7229115 DOI: 10.1038/s41598-020-64841-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from immature myeloid cells (IMCs). MDSCs are known to play important roles in tumor immune evasion. While we know that there are a large number of circulating and tumor-infiltrating MDSCs existing in gastric cancer (GC) patients, the phenotypic characteristics and arginase 1 (ARG1) expression levels of these MDSCs remain very unclear. In our study, flow cytometric analysis of circulating MDSCs from 20 gastric adenocarcinoma (GAC) patients found that ≥80% ARG1-expressing MDSCs were mainly early-stage MDSCs (HLA-DR-CD33+CD14-CD15-MDSCs). In addition, our investigation showed that tumor-infiltrating MDSCs from 6 GAC patients consisted of >35% ARG1-expressing naïve MDSCs (HLA-DR-CD33-CD11b-CD14-CD15-MDSCs), >15% early-stage MDSCs and >40% monocytic MDSCs (HLA-DR-CD14+MDSCs). This preliminary study describes the phenotypic characteristics and ARG1 expression levels of MDSCs from GAC patients and shows that circulating and tumor-infiltrating ARG1-expressing cells were mainly immature and monocytic MDSCs, which provides information to better understand the mechanisms that allow gastric cancer cells to evade the immune system.
Collapse
Affiliation(s)
- WeiHong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China.
| | - XuRan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - WenBo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Qian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - HuiJie Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Yan Tong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Hao Rong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - ZhenQiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, China
| | - ShiChun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| |
Collapse
|
9
|
Hsu HP, Wang CY, Hsieh PY, Fang JH, Chen YL. Knockdown of serine/threonine-protein kinase 24 promotes tumorigenesis and myeloid-derived suppressor cell expansion in an orthotopic immunocompetent gastric cancer animal model. J Cancer 2020; 11:213-228. [PMID: 31892988 PMCID: PMC6930401 DOI: 10.7150/jca.35821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022] Open
Abstract
A higher incidence of gastric cancer has been found in East Asia compared to the incidence in other regions. Gastric cancer patients have a poor prognosis due to distant metastasis and advanced cancer stages. Tumor escape pathways include the expansion of the immunosuppressive myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We have successfully established an orthotopic immunocompetent gastric cancer model in C57BL/6 mice. The cell line is named M12 and was deposited at the Bioresource Collection and Research Center of Taiwan on Sep. 13, 2016 (Patent No. I604054). The orthotopic animal model of gastric cancer has similar biological characteristics as human gastric cancer. Serine/threonine-protein kinase 24 (STK24) is a member of the germinal center kinase (GCK)-III family. GCKs participate in cancer and immunological disorders. The effects of STK24 in gastric cancer are less well understood. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technology was used to induce a STK24 genetic knockout at the genomic DNA level in tumor cells. The knockdown of the STK24 gene increased the tumor growth in an orthotopic model of gastric cancer. The STK24 gene silencing in tumors induced the expansion of CD11b+Ly6C+ cells and F4/80+ macrophages in vivo. To our knowledge, we have developed the first orthotopic transplantable model of gastric cancer in syngeneic inbred mice. Our results further indicate that STK24 is important for immune regulation during the tumorigenesis of gastric cancer.
Collapse
Affiliation(s)
- Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yin Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Hua Fang
- Laboratory Animal Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Senior Citizen Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
10
|
Casacuberta-Serra S, Parés M, Golbano A, Coves E, Espejo C, Barquinero J. Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 2017; 95:538-548. [PMID: 28108746 DOI: 10.1038/icb.2017.4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) have an important role in controlling inflammation. As such, they are both a therapeutic target and, based on the administration of ex vivo-generated MDSCs, a therapeutic tool. However, there are relatively few reports describing methods to generate human MDSCs, and most of them rely on cells obtained from peripheral blood monocytes. We investigated alternative approaches to the generation of MDSCs from hematopoietic progenitors and monocytes. Purified CD34+ hematopoietic progenitors from apheresis products and CD14+ cells isolated from buffy coats were cultured in the presence of different combinations of cytokines. The resulting myeloid cell populations were then characterized phenotypically and functionally. Progenitor cells cultured in the presence of SCF+TPO+FLT3-L+GM-CSF+IL-6 gave rise to both monocytic (M)- and granulocytic (G)-MDSCs but production of the latter was partially inhibited by IL-3. M-MDSCs but not G-MDSCs were obtained by culturing peripheral blood monocytes with GM-CSF+IL-6 or GM-CSF+TGF-β1 for 6 days. CD14 expression was downregulated in the cultured cells. PD-L1 expression at baseline was lower in hematopoietic progenitor cell-derived than in monocyte-derived MDSCs, but was markedly increased in response to stimulation with LPS+IFN-γ. The functionality of the two MDSC subtypes was confirmed in studies of the suppression of allogeneic and mitogen-induced proliferation and by cytokine profiling. Here we describe both the culture conditions that allow the generation of MDSCs and the phenotypical and functional characterization of these cell populations.
Collapse
Affiliation(s)
- Sílvia Casacuberta-Serra
- Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Parés
- Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arantxa Golbano
- Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Coves
- Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|