1
|
Leber's Hereditary Optic Neuropathy with Mitochondrial DNA Mutation G11778A: A Systematic Literature Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1107866. [PMID: 36743514 PMCID: PMC9893526 DOI: 10.1155/2023/1107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023]
Abstract
Background LHON is a progressive disease with early disease onset and male predominance, usually causing devastating visual loss to patients. These systematic review and meta-analysis are aimed at summarizing epidemiology, disease onset and progression, visual recovery, risk factors, and treatment options of Leber's hereditary optic neuropathy (LHON) with mitochondrial DNA mutation G11778A from current evidence. Methods The PubMed database was examined from its inception date to November 2021. Data from included studies were pooled with either a fixed-effects model or a random-effects model, depending on the results of heterogeneity tests. Sensitivity analysis was conducted to test the robustness of results. Results A total of 41 articles were included in the systematic review for qualitative analysis, and 34 articles were included for quantitative meta-analysis. The pooled estimate of proportion of G11778A mutation among the three primary mutations of mitochondrial DNA (G11778A, G3460A, and T14484C) for LHON was 73% (95% CI: 67% and 79%), and the LHON patients with G11778A mutation included the pooled male ratio estimate of 77% (76% and 79%), the pooled age estimate of 35.3 years (33.2 years and 37.3 years), the pooled onset age estimate of 22.1 years (19.7 years and 24.6 years), the pooled visual acuity estimate of 1.4 LogMAR (1.2 LogMAR and 1.6 LogMAR), and the pooled estimate of spontaneous visual recovery rate (in either 1 eye) of 20% (15% and 27%). Conclusions The G11778A mutation is a prevalent mitochondrial DNA mutation accounting for over half of LHON cases with three primary mutations. Spontaneous visual recovery is rare, and no effective treatment is currently available.
Collapse
|
2
|
Cui S, Yang L, Jiang H, Peng J, Shang J, Wang J, Zhang X. Clinical Features of Chinese Sporadic Leber Hereditary Optic Neuropathy Caused by Rare Primary mtDNA Mutations. J Neuroophthalmol 2020; 40:30-36. [PMID: 32045392 DOI: 10.1097/wno.0000000000000799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The primary aim of this study was to describe clinical features of Chinese sporadic Leber hereditary optic neuropathy (LHON) caused by rare primary mitochondrial DNA (mtDNA) mutations. METHODS We characterized a Chinese patient cohort with rare primary mtDNA mutations at Beijing Tongren Hospital between 2015 and 2018. The clinical features of these patients were retrospectively recorded and analyzed. RESULTS Sixteen patients with LHON who had the selected rare primary mutations, including m.4171C>A (3 patients), m.10197G>A (1 patient), m.14459G>A (4 patients), and m.14502T>C (8 patients), were evaluated. The mean age at disease onset was 15 ± 6 years, and the male to female ratio was 15:1. Of 32 eyes of all patients, 75% (24/32) had a worst Snellen best-corrected visual acuity ≤0.1 (worse than 20/200), while 67% (2/3) who were carrying the m.4171C>A mutation experienced significant visual improvement. In addition, 40% (2/5) of patients with LHON carrying only m.14502T>C mutation had only mild visual impairment. Isolated manifestations of LHON was present in 94% (15/16) of all patients; 1 patient with the m.14459G>A mutation had LHON plus dystonia. Brain MRI T2 short tau inversion recovery sequences demonstrated optic atrophy in 62.5% (10/16); increased T2 signal in the optic nerve was found in 38% (6/16) of patients. The patient with LHON plus dystonia demonstrated optic atrophy and increased T2 signal in basal ganglia. CONCLUSION Patients with LHON and rare primary mutations have diverse clinical phenotypes. Those with the m.4171C>A mutation are more likely to have a good visual prognosis, while the m.14502T>C mutation may play a synergistic role in disease onset. Increased signal in the optic nerve on MRI is not rare, and this feature should not exclude LHON as the potential cause for optic neuropathy.
Collapse
Affiliation(s)
- Shilei Cui
- Department of Neurology (SC, HJ, JP, JW, XZ), Beijing Tongren Hospital, Capital Medical University, Beijing, China; and Medical Research Center (LY, JS), Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Jancic J, Rovcanin B, Djuric V, Pepic A, Samardzic J, Nikolic B, Novakovic I, Kostic VS. Analysis of secondary mtDNA mutations in families with Leber's hereditary optic neuropathy: Four novel variants and their association with clinical presentation. Mitochondrion 2019; 50:132-138. [PMID: 31743754 DOI: 10.1016/j.mito.2019.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by subacute optic atrophy which results in severe visual impairment. The penetrance, clinical expression and disease onset are variable, and frequently associated with other extraocular symptoms. The disease phenotype remains to be an intriguing question which is dependent upon primary as well as secondary mtDNA mutations. In this study we analyzed the whole mtDNA sequence in six LHON families from Serbian population. The mtDNA sequencing was performed by Sanger's method and various bioinformatic tools were used for analysis of detected mutations. LHON patients carry all three (m.3460G > A, m.11778G > A and m.14484 T > C) primary mutations, together with numerous secondary mtDNA mutations. Four novel mutations (m.4516G > A, m.8779C > T, m.13138G > A and m.15986insG) in four different families were discovered. The m.8779C > T and m.13138G > A mutations could have a potential influence on LHON symptoms, but the issue of effect of secondary mtDNA mutations in LHON patients needs to be better clarified in future studies.
Collapse
Affiliation(s)
- Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Djuric
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Pepic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Abstract
SIGNIFICANCE We identified a missense mutation, m.11778G>A (p.R340H), in the mitochondrially encoded NADH dehydrogenase 4 gene (ND4) in eight patients and three asymptomatic carriers, even though the incidence of this has been considered low in Chinese population. These results have implications for the families' genetic counseling and clinical management. PURPOSE Leber hereditary optic neuropathy (LHON OMIM 535000) is one of the most common inherited optic neuropathies. The aim of this study was to identify the genetic cause in two Han Chinese families with LHON. METHODS We used Sanger sequencing to identify the genetic cause of two Han Chinese families from Hunan, China, with LHON. RESULTS The patients in these two families presented with typical LHON, with male patients experiencing more severe phenotypes. A missense mutation, m.11778G>A (p.R340H), in the ND4 gene was identified in eight patients and three asymptomatic carriers, even though the incidence of this has been considered low in Chinese population. CONCLUSIONS Eight of 11 family members (72.7%) manifested some vision loss, which is far higher percentage than reported in other studies. The variant is predicted to be the disease-causing mutation and results in seriously abnormal function of complex I subunits of the mitochondrial respiratory chain. These results have implications for the families' genetic counseling and clinical management and help to develop new LHON target-gene therapy strategies.
Collapse
|
5
|
Cruz-Bermúdez A, Vicente-Blanco RJ, Hernández-Sierra R, Montero M, Alvarez J, González Manrique M, Blázquez A, Martín MA, Ayuso C, Garesse R, Fernández-Moreno MA. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity. PLoS One 2016; 11:e0146816. [PMID: 26784702 PMCID: PMC4718627 DOI: 10.1371/journal.pone.0146816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ramiro J. Vicente-Blanco
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosana Hernández-Sierra
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mayte Montero
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | - Alberto Blázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Angel Martín
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundacion Jimenez Diaz University Hospital (IIS-FJD, UAM), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| | - Miguel A. Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| |
Collapse
|