1
|
Alves Â, Medeiros R, Teixeira AL, Dias F. Decoding PTEN regulation in clear cell renal cell carcinoma: Pathway for biomarker discovery and therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189165. [PMID: 39117092 DOI: 10.1016/j.bbcan.2024.189165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Renal cell carcinoma is the most common adult renal solid tumor and the deadliest urological cancer, with clear cell renal cell carcinoma (ccRCC) being the predominant subtype. The PI3K/AKT signaling pathway assumes a central role in ccRCC tumorigenesis, wherein its abnormal activation confers a highly aggressive phenotype, leading to swift resistance against current therapies and distant metastasis. Thus, treatment resistance and disease progression remain a persistent clinical challenge in managing ccRCC effectively. PTEN, an antagonist of the PI3K/AKT signaling axis, emerges as a crucial factor in tumor progression, often experiencing loss or inactivation in ccRCC, thereby contributing to elevated mortality rates in patients. Therefore, understanding the molecular mechanisms underlying PTEN suppression in ccRCC tumors holds promise for the discovery of biomarkers and therapeutic targets, ultimately enhancing patient monitoring and treatment outcomes. The present review aims to summarize these mechanisms, emphasizing their potential prognostic, predictive, and therapeutic value in managing ccRCC.
Collapse
Affiliation(s)
- Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal; Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal; Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.
| |
Collapse
|
2
|
Dzulko M, Pons M, Henke A, Schneider G, Krämer OH. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer 2020; 1874:188453. [PMID: 33068647 DOI: 10.1016/j.bbcan.2020.188453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.
Collapse
Affiliation(s)
- Melanie Dzulko
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, 81675 Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Tumkur Sitaram R, Landström M, Roos G, Ljungberg B. Significance of PI3K signalling pathway in clear cell renal cell carcinoma in relation to VHL and HIF status. J Clin Pathol 2020; 74:216-222. [PMID: 32467322 DOI: 10.1136/jclinpath-2020-206693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
Abstract
Renal cell carcinoma (RCC) includes diverse tumour types characterised by various genetic abnormalities. The genetic changes, like mutations, deletions and epigenetic alterations, play a crucial role in the modification of signalling networks, tumour pathogenesis and prognosis. The most prevalent RCC type, clear cell RCC (ccRCC), is asymptomatic in the early stages and has a poorer prognosis compared with the papillary and the chromophobe types RCCs. Generally, ccRCC is refractory to chemotherapy and radiation therapy. Loss of von Hippel-Lindau (VHL) gene and upregulation of hypoxia-inducible factors (HIF), the signature of most sporadic ccRCC, promote multiple growth factors. Hence, VHL/HIF and a variety of pathways, including phosphatase and TEnsin homolog on chromosome 10/phosphatidylinositol-3-kinase (PI3K)/AKT, are closely connected and contribute to the ontogeny of ccRCC. In the recent decade, multiple targeting agents have been developed based on blocking major signalling pathways directly or indirectly involved in ccRCC tumour progression, metastasis, angiogenesis and survival. However, most of these drugs have limitations; either metastatic ccRCC develops resistance to these agents, or despite blocking receptors, tumour cells use alternate signalling pathways. This review compiles the state of knowledge about the PI3K/AKT signalling pathway confined to ccRCC and its cross-talks with VHL/HIF pathway.
Collapse
Affiliation(s)
- Raviprakash Tumkur Sitaram
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Translational Research Center (TRC), Umeå Universitet, Umeå, Väasterbotten, Sweden
| | - Börje Ljungberg
- Department of Surgical and Preoperative Sciences, Urology and Andrology, Umeå Universitet, Umea, Västerbotten, Sweden
| |
Collapse
|
4
|
Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities. Nat Rev Urol 2019; 16:655-673. [PMID: 31602010 DOI: 10.1038/s41585-019-0233-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common renal cell carcinoma (RCC) subtype and accounts for 10-15% of all RCCs. Despite clinical need, few pharmacogenomics studies in pRCC have been performed. Moreover, current research fails to adequately include pRCC laboratory models, such as the ACHN or Caki-2 pRCC cell lines. The molecular mechanisms involved in pRCC development and drug resistance are more diverse than in clear-cell RCC, in which inactivation of VHL occurs in the majority of tumours. Drug resistance to multiple therapies in pRCC occurs via genetic alteration (such as mutations resulting in abnormal receptor tyrosine kinase activation or RALBP1 inhibition), dysregulation of signalling pathways (such as GSK3β-EIF4EBP1, PI3K-AKT and the MAPK or interleukin signalling pathways), deregulation of cellular processes (such as resistance to apoptosis or epithelial-to-mesenchymal transition) and interactions between the cell and its environment (for example, through activation of matrix metalloproteinases). Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Further studies on novel resistance biomarkers are needed to improve patient prognosis and stratification as well as drug development.
Collapse
|
5
|
Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L, Deiters A. Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. J Med Chem 2018; 61:5900-5909. [PMID: 29993250 DOI: 10.1021/acs.jmedchem.7b01891] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical probes of microRNA (miRNA) function are potential tools for understanding miRNA biology that also provide new approaches for discovering therapeutics for miRNA-associated diseases. MicroRNA-21 (miR-21) is an oncogenic miRNA that is overexpressed in most cancers and has been strongly associated with driving chemoresistance in cancers such as renal cell carcinoma (RCC). Using a cell-based luciferase reporter assay to screen small molecules, we identified a novel inhibitor of miR-21 function. Following structure-activity relationship studies, an optimized lead compound demonstrated cytotoxicity in several cancer cell lines. In a chemoresistant-RCC cell line, inhibition of miR-21 via small molecule treatment rescued the expression of tumor-suppressor proteins and sensitized cells to topotecan-induced apoptosis. This resulted in a >10-fold improvement in topotecan activity in cell viability and clonogenic assays. Overall, this work reports a novel small molecule inhibitor for perturbing miR-21 function and demonstrates an approach to enhancing the potency of chemotherapeutics specifically for cancers derived from oncomir addiction.
Collapse
Affiliation(s)
- Yuta Naro
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Nicholas Ankenbruck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Meryl Thomas
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Yaniv Tivon
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Colleen M Connelly
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Laura Gardner
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Deiters
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
6
|
Huang L, Zeng L, Chu J, Xu P, Lv M, Xu J, Wen J, Li W, Wang L, Wu X, Fu Z, Xie H, Wang S. Chemoresistance‑related long non‑coding RNA expression profiles in human breast cancer cells. Mol Med Rep 2018; 18:243-253. [PMID: 29749447 PMCID: PMC6059676 DOI: 10.3892/mmr.2018.8942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in females worldwide. Chemoresistance has been a major reason for the drug therapy failure. The present study performed a microarray analysis between MCF-7 and MCF-7/adriamycin (ADR) cells, and intended to identify long non-coding (lnc)RNA expression character in drug resistant breast cancer cells. MCF-7/ADR cells were induced from MCF-7 cells via pulse-selection with doxorubicin for 4 weeks, and the resistance to doxorubicin of ADR cells was confirmed by MTT assay. Microarray analysis was performed between MCF-7 and MCF-7/ADR cells. Total RNA was extracted from the two cell lines respectively and was transcribed into cDNA. The results of the microarray were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene Ontology (GO) and pathways analysis were conducted to enrich the dysregulated lncRNAs presented in the microarray results. Compared to the MCF-7 cells, 8,892 lncRNAs were differentially expressed in MCF/ADR cells (absolute fold-change >2.0). A total of 32 lncRNAs were selected for RT-qPCR by fold-change filtering, standard Student's t-test, and multiple hypothesis testing. Among the dysregulated lncRNAs, AX747207 was prominent because its associated gene RUNX3 was previously reported to be relative to malignant tumor chemoresistance. GO analysis results also indicated some biological processes and molecular functions linked to chemoresistance. The pathway enrichment results provided some potential pathways associated with chemoresistance. In the present study, the authors intended to identify lncRNA expression character in drug resistant cell line MCF-7/ADR, corresponding to the parental MCF-7 cell line. In addition, the study identified the lncRNA AX747207, and its potential targeted gene RUNX3, may be related to chemoresistance in breast cancer. These results may new insights into exploring the mechanisms of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Lei Huang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jiahui Chu
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Mingming Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wenqu Li
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Luyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Hui Xie
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|