1
|
PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway. Inflammation 2022; 45:2339-2351. [PMID: 35687213 DOI: 10.1007/s10753-022-01696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 01/16/2023]
Abstract
This study aims to confirm the protective effect of Pentraxin 3 (PTX3) on intestinal mucosal barrier damage in sepsis in animal and cell models and explore its mechanism. Analysis of the GSE147775 gene set revealed that the level of PTX3 was upregulated in the lipopolysaccharide (LPS)-induced rat sepsis model. The mice sepsis model was established by cecal ligation perforation (CLP), and the cell inflammation model was induced by LPS. Cell apoptosis and the expression of apoptosis-related protein were detected by flow cytometry and Western blotting. The PTX3 level was significantly upregulated in the mice sepsis model. Intestinal mucosal barrier damage was aggravated and inflammatory factor expression was upregulated after PTX3 downregulation in sepsis mice. After upregulation of PTX3, intestinal mucosal barrier damage was alleviated and inflammatory factor expression was decreased in sepsis mice. Further data mining suggested that the anti-inflammatory effect of PTX3 might be realized through inhibition of the toll-like receptor (TLR) signaling pathway. Moreover, compared with the LPS group, downregulation of PTX3 increased cell apoptosis and the levels of BCL2-associated X (Bax), myeloperoxidase (MPO), tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interferon-gamma (IFN-γ), and decreased the levels of B-cell lymphoma-2 (Bcl-2), zona occludens (ZO)-1, and occludin. On the contrary, overexpression of PTX3 reduced cell apoptosis and the levels of Bax, MPO, TNF-α, IL-1β, and IFN-γ. Moreover, downregulation of PTX3 reversed the inhibitive effects on cell apoptosis and inflammation and promotive effects on the levels of Zo-1 and occludin induced by CLI-095 (a TLR signaling pathway inhibitor). In the CLP-induced mice sepsis model and LPS-induced cell inflammation model, PTX3 inhibits inflammatory response and reduces intestinal mucosal barrier damage through the TLR signaling pathway.
Collapse
|
2
|
Zhao YH, Zhang SW, Zhao HJ, Qin HY, Wu F, Zhang J, Zhang YQ, Liu XL, Liang S, Zhang H, Wu JD, Zhao ZY, Wang HZ, Shao M, Liu J, Dong JT, Zhang WJ. Gadolinium chloride pre-treatment reduces the inflammatory response and preserves intestinal barrier function in a rat model of sepsis. Exp Ther Med 2021; 22:1143. [PMID: 34504589 PMCID: PMC8393272 DOI: 10.3892/etm.2021.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/09/2019] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response is closely associated with sepsis occurrence and progression. Damage to the function of the intestinal mucosal barrier is considered to be the ῾initiation factor᾿ for the development of multiple organ dysfunction syndrome, which is the most severe progression of sepsis. The aim of the present study was to investigate whether gadolinium chloride (GdCl3) could alleviate the systemic inflammatory response and protect the function of the intestinal mucosal barrier in a rat model of sepsis. The mechanism underlying this protective effect was also explored. Sprague-Dawley rats were divided into four groups: Sham, sham + GdCl3, cecal ligation and puncture (CLP; a model of sepsis) and CLP + GdCl3. In each group, blood was collected from the abdominal aorta, and intestinal tissue was collected after 6, 12 and 24 h of successful modeling. Levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were determined using ELISA. Western blot analysis was used to determine levels of occludin, tight junction protein ZO-1 (ZO-1), myosin light chain kinase 3 (MLCK), NF-κB and caspase-3 in intestinal tissues. Hematoxylin-eosin staining was used to observe the degree of damage to intestinal tissue. The results indicated that in CLP sepsis model rats treated with GdCl3, the release of systemic and intestinal pro-inflammatory factors was reduced and tissue damage was alleviated when compared with untreated CLP rats. Additionally, the expression of occludin and ZO-1 was increased, while that of NF-κB, MLCK, and caspase-3 was reduced in the CLP + GdCl3 rats compared with the CLP rats. GdCl3 may alleviate systemic and intestinal inflammatory responses and reduce the expression of MLCK through inhibition of the activation of NF-kB. The results of the present study also indicated that GdCl3 promoted the expression of occludin and ZO-1. GdCl3 was also demonstrated to reduce cell apoptosis through the inhibition of caspase-3 expression.
Collapse
Affiliation(s)
- Yan Heng Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Shun Wen Zhang
- Department of Thoracic Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hai Jun Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hui Yuan Qin
- Department of Thoracic Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jie Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yu Qing Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Xiao Ling Liu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Su Liang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hui Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jiang Dong Wu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Zheng Yong Zhao
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Hong Zhou Wang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Meng Shao
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jing Liu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jiang Tao Dong
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Wan Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
3
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sakamoto Y, Tsujiguchi T, Ito K, Yamanouchi K. DETERMINATION OF GUT BACTERIAL METABOLITES IN RADIATION EXPOSED MICE. RADIATION PROTECTION DOSIMETRY 2019; 184:493-495. [PMID: 31323674 DOI: 10.1093/rpd/ncz094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Gut microflora (GM) impacts human health in various ways, both beneficial and detrimental. Recently, it has attracted attention for its application in treatment, as protective agents, and as biomarkers in radiation exposure. In this study, we focused on organic acids that have not yet been reported to be related to radiation exposure; we measured the pH and organic acid content in the faeces of 0, 2, 4 and 8 Gy-irradiated mice. A common trend of fluctuation of some organic acids was observed in each group, suggesting a correlation between radiation exposure and organic acid fluctuation. Lactate fluctuation was similar between 0 and 2 Gy-, and 4 and 8 Gy-irradiated mice. Based on this finding, we suggest that lactate may also be an organic acid that is greatly affected by irradiation.
Collapse
Affiliation(s)
- Yamato Sakamoto
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | | | - Koichi Ito
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Kanako Yamanouchi
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
5
|
Fu X, Liu L. Pro-resolution of Inflammation: New Hints to Manage Sepsis? SEVERE TRAUMA AND SEPSIS 2019. [PMCID: PMC7121927 DOI: 10.1007/978-981-13-3353-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sepsis is newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The pathophysiological mechanism of sepsis is highly complex, and the mortality of in-patients suffering from sepsis is more than 10%. Severe unmanaged inflammation and inappropriate immune response characterize sepsis. Anti-inflammation therapies alone are not successful for the reason that disbalance of anti-inflammatory and pro-resolving agents. In the recent researches, the host responses during the course of self-resolving infections are found to have the involvements of specialized pro-resolution mediators (SPMs), namely, lipoxins, resolvins, protectins and maresins. These endogenous lipid metabolites are core signal molecules in the resolution of inflammation, playing a key role in regulating the inflammation and promoting return to homeostasis. Besides, heme oxygenase-1 (HO-1, a sensitive marker for oxidative stress) is also known for upregulation in inflammation profiling. Carbon monoxide, synthesized by HO-1, performs multiple stances of anti-inflammation and pro-resolution along with the SPMs. If the potentially beneficial effects of these mediators would be well evaluated in clinical trials, they present encouraging new hints in managing infectious maladies especially sepsis.
Collapse
Affiliation(s)
- Xiaobing Fu
- Wound Healing and Cell Biology Lab, First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chong Qing, China
| |
Collapse
|
6
|
Chen QF, Hao H, Kuang XD, Hu QD, Huang YH, Zhou XY. BML-111, a lipoxin receptor agonist, protects against acute injury via regulating the renin angiotensin-aldosterone system. Prostaglandins Other Lipid Mediat 2018; 140:9-17. [PMID: 30412790 DOI: 10.1016/j.prostaglandins.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The renin angiotensin-aldosterone system (RAAS) and lipoxins (LXs) have similar roles in many processes. We previously reported that BML-111, a Lipoxin receptor agonist, inhibited chronic injury hepatic fibrosis by regulating RAAS, but whether LXs are involved in BML-111-mediated protection from acute injury is unclear still. METHODS We established models of acute liver/lung injury and confirmed them with histopathology and myeloperoxidase (MPO) measurements. BML-111, a lipoxin receptor agonist, was applied to mimic the effects of LXs. The contents and activities of angiotensin converting enzyme(ACE) and angiotensinconverting enzyme 2 (ACE2) were measured through ELISA and activity assay kits respectively. Angiotensin II (AngII), angiotensin-(1-7) (Ang-1-7), AngII type 1 receptor (AT1R), and Mas receptor were quantified with ELISA and Western blot. RESULTS Models of acute injury were established successfully and BML-111 protected LPS-induced acute lung injury and LPS/D-GalN-induced acute liver injury. BML-111 repressed the activity of ACE, but increased the activity of ACE2. BML-111 decreased the expression levels of ACE, AngII, and AT1R, meanwhile increased the levels of ACE2, Ang-(1-7), and Mas. Furthermore, BOC-2, an inhibitor of lipoxin receptor, reversed all the effects. CONCLUSION BML-111 could protect against acute injury via regulation RAAS.
Collapse
Affiliation(s)
- Qiong-Feng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Hua Hao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiao-Dong Kuang
- Department of Pathology, Medical College of Nanchang University, Nanchang 330006, China
| | - Quan-Dong Hu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Yong-Hong Huang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China; Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China.
| |
Collapse
|
7
|
Pan S, Wu Y, Pei L, Li S, Song L, Xia H, Wang Y, Yu Y, Yang X, Shu H, Zhang J, Yuan S, Shang Y. BML-111 Reduces Neuroinflammation and Cognitive Impairment in Mice With Sepsis via the SIRT1/NF-κB Signaling Pathway. Front Cell Neurosci 2018; 12:267. [PMID: 30186119 PMCID: PMC6110933 DOI: 10.3389/fncel.2018.00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023] Open
Abstract
Sepsis is a life-threatening state of organ dysfunction caused by infection and which can induce severe neurological disorders that lead to neuroinflammation and cognitive impairment. Inflammation has been reported to cause neuronal apoptosis in sepsis, which can finally lead to cognitive impairment. Previous studies have suggested that BML-111 can exhibit anti-inflammatory and proresolution activities. Additionally, silent information regulator 1 (SIRT1) can inhibit the NF-κB signaling pathway in an inflammation state. However, the role of the SIRT1/NF-κB signaling pathway in the protective effects of BML-111 against sepsis-induced neuroinflammation and cognitive impairment remains unclear. This study aimed to determine the effects of BML-111 on neuroinflammation and cognitive impairment induced by sepsis. Male C57BL/6J mice were subjected to cecal ligation and puncture (CLP) or a sham operation. BML-111 was administered via intracerebroventricular injection (0.1 mg/kg) immediately after CLP. Boc-2 (50 μg/kg) was administered intracerebroventricularly 30 min before CLP, and EX527 (10 μg) was administered every 2 days for a total of three times before CLP, also intracerebroventricularly. Some of the surviving mice underwent open-field, novel-object-recognition, and fear-conditioning behavioral tests at 7 days after surgery. Some of the other surviving mice were killed at 24 h after surgery to assess synaptic damage (PSD95 and Synapsin1), markers of inflammation [tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β], cytoplasmic p65, nuclear p65, Ac- NF-κB and SIRT1. At 48 h after CLP, TUNEL and glia-activation by immunofluorescence investigations were performed on a separate cohort of surviving animals. The results suggested that sepsis resulted in cognitive impairment, which was accompanied by the decreased the expression of PSD95 and Synapsin1, increased amount of TUNEL-positive cells and the activation of glias, increased production of TNF-α and IL-1β, increased expression of nuclear p65, Ac- NF-κB, and decreased expression of SIRT1 and cytoplasmic p65. It is especially notable that these abnormalities could be reduced by BML-111 treatment. EX527, an SIRT1 inhibitor, abolished the effects of BML-111. These results demonstrate that BML-111 can reduce the neuroinflammation and cognitive impairment induced by sepsis via SIRT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Guo P, Zhang SW, Zhang J, Dong JT, Wu JD, Tang ST, Yang JT, Zhang WJ, Wu F. Effects of imipenem combined with low-dose cyclophosphamide on the intestinal barrier in septic rats. Exp Ther Med 2018; 16:1919-1927. [PMID: 30186419 PMCID: PMC6122399 DOI: 10.3892/etm.2018.6373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Anti-infection therapy combined with immunotherapy is one of the important research approaches for treating sepsis. However, the combination of anti-infection and immunotherapy therapeutic agents may have an adverse effect on intestinal barrier function. In the present study, it was hypothesized that imipenem combined with low-dose cyclophosphamide (CTX) could improve the sepsis survival rate compared with imipenem treatment alone. In addition, the alterations in the intestinal barrier were investigated and the possible mechanisms of altering intestinal barrier function in septic rats treated with imipenem combined with low-dose CTX or imipenem alone were explored. To investigate the effect of imipenem combined with low-dose CTX on the intestinal barrier, the markers of histopathology, intestinal permeability, intestinal epithelial apoptosis, cytokines interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α, and tight junction proteins zonula occludens (ZO)-1, occludin and claudin-2, were quantitatively and qualitatively evaluated. The results indicated that imipenem combined with low-dose CTX significantly improved the survival rate of rats compared with imipenem alone (P<0.05). However, no significantly difference between the treatment with imipenem combined with low-dose CTX and imipenem treatment alone was indicated with regard to histopathology, intestinal permeability, intestinal epithelial apoptosis and the expression of claudin-2, ZO-1 and TNF-α. However, imipenem combined with low-dose CTX significantly reduced IL-6 and IL-10 expression and significantly increased occludin expression compared with imipenem alone (P<0.05). It was concluded that imipenem combined with low-dose CTX could improve the survival rate of rats with sepsis compared with rats treated with imipenem alone. The present findings suggest that imipenem combined with low-dose CTX may cause damage to the intestinal barrier function and the mechanism may be associated with a reduction in IL-10 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Shun-Wen Zhang
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jie Zhang
- Department of Emergency, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Tao Dong
- Department of Neurosurgery, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Dong Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Su-Tu Tang
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jun-Ting Yang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
9
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Hu Q, Hu Z, Chen Q, Huang Y, Mao Z, Xu F, Zhou X. BML-111 equilibrated ACE-AngII-AT1R and ACE2-Ang-(1-7)-Mas axis to protect hepatic fibrosis in rats. Prostaglandins Other Lipid Mediat 2017; 131:75-82. [PMID: 28822808 DOI: 10.1016/j.prostaglandins.2017.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND It was recently reported Lipoxins (LXs) had protective effects on fibrous diseases, and renin-angiotensin-aldosterone system (RAAS) had played vital and bidirectional roles in hepatic fibrosis. In this paper, a hepatic fibrosis model, induced by carbon tetrachloride (CCL4) in rats, was used to observe the relations between RAAS and LXs, as well as to further explore the alternative anti-fibrosis mechanisms of LXs. METHODS The model was evaluated by morphological observations and biochemical assays. The activities and contents of angiotensin converting enzyme (ACE) and angiotensin converting enzyme 2 (ACE2) were examined through assay kits and ELISA. The expression levels of angiotensinII (AngII), Angiotensin II type 1 receptor (AT1R), angiotensin-(1-7) (Ang-1-7), and Mas were all measured using real time PCR, ELISA, and Western blot. RESULTS The model was established successfully and BML-111 significantly ameliorated CCL4-induced hepatic fibrosis, including reduction inflammation injury, decrease extracellular matrix deposition, and improvement hepatic functions. Furthermore, BML-111 could obviously decrease not only the activities of ACE but also the expression levels of ACE, AngII,and AT1R, which were induced by CCL4. On the other hand, BML-111 could markedly increase the activities of ACE2, besides the expression levels of ACE2, Ang-(1-7) and Mas. More importantly, BOC-2, a lipoxin A4 receptor blocker, could reverse all these phenomena. CONCLUSIONS Equilibrating ACE-AngII-AT1R axis and ACE2-Ang-(1-7)-Mas axis mediated the protective effect of BML-111 on hepatic fibrosis in rats.
Collapse
Affiliation(s)
- Quandong Hu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhenzhen Hu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qiongfeng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yonghong Huang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Tumor pathogenesis and Molecular Pathology, Nanchang, Jiangxi 330006, PR China
| | - Zi Mao
- The First Clinical Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Fangyun Xu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Tumor pathogenesis and Molecular Pathology, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
11
|
Buechler C, Pohl R, Aslanidis C. Pro-Resolving Molecules-New Approaches to Treat Sepsis? Int J Mol Sci 2017; 18:ijms18030476. [PMID: 28241480 PMCID: PMC5372492 DOI: 10.3390/ijms18030476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a complex response of the body to exogenous and endogenous insults. Chronic and systemic diseases are attributed to uncontrolled inflammation. Molecules involved in the initiation of inflammation are very well studied while pathways regulating its resolution are insufficiently investigated. Approaches to down-modulate mediators relevant for the onset and duration of inflammation are successful in some chronic diseases, while all of them have failed in sepsis patients. Inflammation and immune suppression characterize sepsis, indicating that anti-inflammatory strategies alone are inappropriate for its therapy. Heme oxygenase 1 is a sensitive marker for oxidative stress and is upregulated in inflammation. Carbon monoxide, which is produced by this enzyme, initiates multiple anti-inflammatory and pro-resolving activities with higher production of omega-3 fatty acid-derived lipid metabolites being one of its protective actions. Pro-resolving lipids named maresins, resolvins and protectins originate from the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid while lipoxins are derived from arachidonic acid. These endogenously produced lipids do not simply limit inflammation but actively contribute to its resolution, and thus provide an opportunity to combat chronic inflammatory diseases and eventually sepsis.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93042 Regensburg, Germany.
| |
Collapse
|
12
|
El-Tanbouly GS, El-Awady MS, Megahed NA, El-Kashef HA, Salem HA. The lipoxin A 4 agonist BML-111 attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:361-368. [PMID: 28035464 DOI: 10.1007/s00210-016-1335-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Sepsis is a systemic inflammatory response associating severe infection leading to multi-organ failure, such as hepatic dysfunction. This study investigates the possible hepatoprotective effect of the lipoxin A4 agonist (BML-111) in cecal ligation and puncture (CLP) model in rats. Pretreatment with BML-111 (1 mg/kg, i.p., 1 h before CLP) protected against CLP-induced mortality after 24 h. BML-111 prevented marked inflammatory cells in liver tissues and decreased elevation in serum hepatic biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), gamma-glutamyl transferase (γ-GT)] induced by CLP. Additionally, BML-111 attenuated elevated serum level of interleukin-6 (IL-6) and downregulated hepatic IL-6 mRNA expression. Meanwhile, BML-111 further increased serum IL-10 and upregulated hepatic IL-10 mRNA expression, while it downregulated hepatic mRNA expression of nuclear factor inhibitory protein kappa-B alpha (NFκBia), toll-like receptor-4 (TLR-4), and 5-lipooxygenase (5-LOX). Moreover, BML-111 prevented NF-κB/p65 nuclear translocation and activation. In conclusion, BML-111 attenuated CLP-induced acute hepatic dysfunction through its anti-inflammatory effect by decreasing NF-κB activity, TLR-4, and 5-LOX expression with subsequent decrease in pro-inflammatory IL-6 and elevation in anti-inflammatory IL-10.
Collapse
Affiliation(s)
- Ghada S El-Tanbouly
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nermeen A Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Cheng Q, Wang Z, Ma R, Chen Y, Yan Y, Miao S, Jiao J, Cheng X, Kong L, Ye D. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation. Int Immunopharmacol 2016; 39:229-235. [PMID: 27494686 DOI: 10.1016/j.intimp.2016.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Sepsis is a serious disease that leads to severe inflammation, dysregulation of immune system, multi-organ failure and death. Innate response activator (IRA) B cells, which produce granulocyte-macrophage colony-stimulating factor (GM-CSF), protect against microbial sepsis. Lipid mediator lipoxin A4 (LXA4) exerts anti-inflammatory and immunoregulatory effects, and it has been reported that LXA4 receptor ALX/FPR2 is expressed on B cells. Here, we investigated the potential role of LXA4 on IRA B cells in lipopolysaccharide (LPS)-induced sepsis. We found that LXA4 significantly promoted the expansion of splenic IRA B cells and increased GM-CSF expression in splenic B cells with LPS stimulation. After splenectomy, LXA4 treatment did not change the serum or peritoneal IL-1β, IL-6 and TNF-α levels in LPS-induced sepsis. LXA4 accelerated the migration of peritoneal B cells to spleen for their differentiation into IRA B cells, whereas this effect was independent of peritoneal macrophage. Furthermore, LXA4 enhanced the phosphorylation level of signal transducer and activator of transcription 5 (STAT5) in splenic B cells. These results suggest that LXA4 protects against LPS-induced sepsis by promoting the generation and migration of splenic IRA B cells, and the underlying molecular mechanism may be related to STAT5 activation. It might provide new insights and therapeutic approaches for treating sepsis.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zheng Wang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruihua Ma
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongtao Chen
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuo Miao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyu Jiao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Yan D, Liu HL, Yu ZJ, Huang YH, Gao D, Hao H, Liao SS, Xu FY, Zhou XY. BML-111 Protected LPS/D-GalN-Induced Acute Liver Injury in Rats. Int J Mol Sci 2016; 17:ijms17071114. [PMID: 27420055 PMCID: PMC4964489 DOI: 10.3390/ijms17071114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
Lipoxins (LXs) display unique pro-resolving and anti-inflammatory functions in a variety of inflammatory conditions. The present study was undertaken to investigate the effects of BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester), the agonist of lipoxin A₄ receptor, in a model of Lipopolysaccharides (LPS) and d-Galactosamine (d-GalN) induced acute liver injury, and to explore the mechanisms. Histopathological analyses were carried out to quantify liver injury degree. The activities of myeloperoxidase (MPO) were examined to evaluate the levels of neutrophil infiltration. The activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were detected to evaluate the functions of the liver. The amounts of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and interleukin-1β (IL-1β) were measured using enzyme-linked immunosorbent assay (ELISA), and the expression levels of transforming growth factor-β1(TGF-β1) and cyclooxygenase-2 (COX-2) were examined using Western blotting. The antioxidant capacity, the activities of inducible nitric oxide synthase (iNOS), the contents of malondialdehyde (MDA) and nitric oxide (NO) were analyzed with the kits via biochemical analysis. We established the model of acute liver injury with lipopolysaccharide and d-Galactosamine (LPS/d-GalN): (1) histopathological results and MPO activities, with the activities of AST and ALT in serum, consistently demonstrated LPS and d-GalN challenge could cause severe liver damage, but BML-111 could prevent pathological changes, inhibit neutrophil infiltration, and improve the hepatic function; (2) LPS/d-GalN increased TNF-α, IL-1β, COX-2, and IL-10, while decreasing TGF-β1. However, BML-111 could repress LPS/d-GalN -induced TNF-α, IL-1β and COX-2, meanwhile increasing the expression levels of TGF-β1 and IL-10; (3) LPS/d-GalN inhibited the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and hydroxyl radical-scavenging ability, simultaneously increasing the levels of MDA and NO, so also the activity of iNOS. Otherwise, BML-111 could reverse all the phenomena. In a word, BML-111 played a protective role in acute liver injury induced by LPS and d-GalN in rats, through improving antioxidant capacity and regulating the balance of inflammatory cytokines.
Collapse
Affiliation(s)
- Dan Yan
- Department of Pharmacology, Medical College of Nanchang University, Nanchang 330006, China.
- Department of Pharmacy, Jiangxi Province Cancer Hospital, Nanchang 330006, China.
| | - Hai-Ling Liu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China.
| | - Zhong-Jian Yu
- Department of Pharmacology, Medical College of Nanchang University, Nanchang 330006, China.
- Department of Science and Education, Jiangxi Province Cancer Hospital, Nanchang 330006, China.
| | - Yong-Hong Huang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China.
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China.
| | - Dian Gao
- Department of Human Parasitology, Medical College of Nanchang University, Nanchang 330006, China.
| | - Hua Hao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Shou-Sheng Liao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Fang-Yun Xu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China.
| | - Xiao-Yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang 330006, China.
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang 330006, China.
| |
Collapse
|