1
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol 2020; 34:e22567. [DOI: 10.1002/jbt.22567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Abdalla
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| | - Bhupendra Singh
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
- Eurofins Lancaster Laboratories Lancaster PA 17605
| | - Hari K. Bhat
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
4
|
Ritter A, Hirschfeld M, Berner K, Jaeger M, Grundner-Culemann F, Schlosser P, Asberger J, Weiss D, Noethling C, Mayer S, Erbes T. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark 2020; 27:225-242. [PMID: 32083575 DOI: 10.3233/cbm-190575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deregulated microRNAs (miRNAs) in breast and gynecological cancer might contribute to improve early detection of female malignancies. OBJECTIVE Specification of miRNA types in serum and urine as minimally-invasive biomarkers for breast (BC), endometrial (EC) and ovarian cancer (OC). METHODS In a discovery phase, serum and urine samples from 17 BC, five EC and five OC patients vs. ten healthy controls (CTRL) were analyzed with Agilent human miRNA microarray chip. Selected miRNA types were further investigated by RT-qPCR in serum (31 BC, 13 EC, 15 OC patients, 32 CTRL) and urine (25 BC, 10 EC, 10 OC patients, 30 CTRL) applying two-sample t-tests. RESULTS Several miRNA biomarker candidates exhibited diagnostic features due to distinctive expression levels (serum: 26; urine: 22). Among these, miR-518b, -4719 and -6757-3p were found specifically deregulated in BC serum. Four, non-entity-specific, novel biomarker candidates with unknown functional roles were identified in urine (miR-3973; -4426; -5089-5p and -6841). RT-qPCR identified miR-484/-23a (all p⩽ 0.001) in serum as potential diagnostic markers for EC and OC while miR-23a may also serve as an endogenous control in BC diagnosis. CONCLUSIONS Promising miRNAs as liquid biopsy-based tools in the detection of BC, EC and OC qualified for external validation in larger cohorts.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Noethling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Hospital Memmingen, Memmingen, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Liu H, Jiang B. Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells. J Biosci 2020. [DOI: 10.1007/s12038-020-0001-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Wu L, Zhang C, Chu M, Fan Y, Wei L, Li Z, Yao Y, Zhuang W. miR-125a suppresses malignancy of multiple myeloma by reducing the deubiquitinase USP5. J Cell Biochem 2020; 121:642-650. [PMID: 31452281 DOI: 10.1002/jcb.29309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
miR-125a is a microRNA that is frequently diminished in various human malignancies. However, the mechanism by which impaired miR-125a promotes cancer growth remains undefined. In this study, we investigated the role of miR-125a in the proliferation and apoptosis of multiple myeloma (MM). To do this, we used MM tissue samples (from 40 anonymous patients), normal matched control samples, and five MM-derived cell lines. We also established a mouse model of MM xenograft to explore the effect of overexpression of miR-125a on the MM growth in vivo. Quantitative real-time polymerase chain reaction revealed that the miR-125a expression was broadly reduced in MM tissues and cell lines. The impairment of miR-125a in MM tissues was functionally relevant because the overexpression of miR-125a remarkably decreased the cell viability and colony-forming activity, at least in part, by promoting apoptosis in two miR-125a-deficient MM cell lines: NCI-H929 and U266. Interestingly, we also discovered that the human gene encoding the ubiquitin-specific peptidase 5 (USP5), which is known to promote cellular deubiquitination and ubiquitin/proteasome-dependent proteolysis, was a direct transcriptional target for miR-125a to repress. More importantly, the heterologous expression of USP5 significantly reversed the growth-inhibitory effects of miR-125a on MM cells in vitro. In the mouse xenograft model, overexpressed miR-125a prominently inhibited the growth of MM tumors and concomitantly reduced the expression of USP5 in tumor tissues. These results suggest that miR-125a inhibits the expression of USP5, thereby mitigating the proliferation and survival of malignant MM cells. We propose that USP5 acts as an oncoprotein in miR-125a-missing cancers.
Collapse
Affiliation(s)
- Liting Wu
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Cui Zhang
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Min Chu
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Yingchao Fan
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Lu Wei
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Zhumeng Li
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Yonghua Yao
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Wenfang Zhuang
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| |
Collapse
|
7
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
8
|
Mobini K, Tamaddon G, Fardid R, Keshavarzi M, Mohammadi-Bardbori A. Aryl hydrocarbon-estrogen alpha receptor-dependent expression of miR-206, miR-27b, and miR-133a suppress cell proliferation and migration in MCF-7 cells. J Biochem Mol Toxicol 2019; 33:e22304. [PMID: 30779469 DOI: 10.1002/jbt.22304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/06/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
The underlying functions of miR-206, miR-133a, miR-27b, and miR-21, and their link to the estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR) signaling pathways remain largely unexplored. In this study, we detect the expression of miR-206, miR-133a, miR-27b, and miR-21 in MCF-7 through quantificational real-time polymerase chain reaction assay along with the activation/inhibition of ERα and AhR receptors. Aside from this, cell proliferation and migration as well as AhR-dependent CYP1A1 enzyme activity were measured. Here, we found that the forced increased expression of miR-206, miR-133a, and miR-27b were closely associated with the suppression of MCF-7 cell proliferation and migration. The anti-proliferative-metastatic effect of miR-206, miR-133a, and miR-27b was probably mediated by targeting the ERα and AhR signaling pathways. Considered together, our study indicated that the overexpression of miR-206, miR-133a, and miR-27b might be potential biomarkers for prognosis and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Tamaddon
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences and Health Services, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Exploring the potential value of miR-148b-3p, miR-151b and miR-27b-3p as biomarkers in acute ischemic stroke. Biosci Rep 2018; 38:BSR20181033. [PMID: 30361294 PMCID: PMC6259016 DOI: 10.1042/bsr20181033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022] Open
Abstract
Cerebrovascular disease is the main cause of death in the world. Here, we explored whether circulating serum miR-148b-3p, miR-151b and miR-27b-3p could be as potential diagnostic biomarkers for diagnosing acute ischemic stroke. Seventy-seven IS patients and forty-two healthy controls matched for age and sex were enrolled in the present study. Blood samples were drawn from IS patients within the 24 h. The correlation analysis was performed by Spearman. The ability to distinguish patients from healthy controls was determined by receiver operating characteristic (ROC) curve. The expression of circulating serum miR-148b-3p was significantly decreased, whereas miR-151b and miR-27b-3p were elevated significantly compared with controls. ROC analysis showed area under the ROC curve (AUC) of miR-148b-3p, miR-151b and miR-27b-3p to be 0.6647, 0.6852 and 0.6657, respectively. While the AUC increased to 0.8103 for the combination of miR-148b-3p and miR-27b-3p. Blood miR-151b level was negatively correlated with insulin-like growth factor-1 (IGF-1), and miR-27b-3p level was negatively correlated with IGF-1 and insulin-like growth factor binding protein-3, respectively. Our findings suggest that miR-148b-3p, miR-151b and miR-27b-3p may serve as blood-based biomarkers for diagnosing ischemic stroke patients, and the combination of miR-148b-3p and miR-27b-3p may be more powerful.
Collapse
|
10
|
Oztemur Islakoglu Y, Noyan S, Aydos A, Gur Dedeoglu B. Meta-microRNA Biomarker Signatures to Classify Breast Cancer Subtypes. ACTA ACUST UNITED AC 2018; 22:709-716. [DOI: 10.1089/omi.2018.0157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Alp Aydos
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
11
|
Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey LF, Elman LB, Trojanowski JQ, Umansky SR. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2017; 9:89. [PMID: 29121998 PMCID: PMC5679501 DOI: 10.1186/s13195-017-0316-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Background Minimally invasive specific biomarkers of neurodegenerative diseases (NDs) would facilitate patient selection and disease progression monitoring. We describe the assessment of circulating brain-enriched microRNAs as potential biomarkers for Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Methods In this case-control study, the plasma samples were collected from 250 research participants with a clinical diagnosis of AD, FTD, PD, and ALS, as well as from age- and sex-matched control subjects (n = 50 for each group), recruited from 2003 to 2015 at the University of Pennsylvania Health System, including the Alzheimer’s Disease Center, the Parkinson’s Disease and Movement Disorders Center, the Frontotemporal Degeneration Center, and the Amyotrophic Lateral Sclerosis Clinic. Each group was randomly divided into training and confirmation sets of equal size. To evaluate the potential of circulating microRNAs enriched in specific brain regions affected by NDs and present in synapses as biomarkers of NDs, the levels of 37 brain-enriched and inflammation-associated microRNAs in the plasma of all participants were measured using individual qRT-PCR. A “microRNA pair” approach was used for data normalization. Results MicroRNA pairs and their combinations (classifiers) capable of differentiating NDs from control and from each other were defined using independently and jointly analyzed training and confirmation datasets. AD, PD, FTD, and ALS are differentiated from control with accuracy of 0.89, 0.90, 0.88, and 0.83 (AUCs, 0.96, 0.96, 0.94, and 0.93), respectively; NDs are differentiated from each other with accuracy ranging from 0.77 (AUC, 0.87) for AD vs. FTD to 0.93 (AUC, 0.98) for AD vs. ALS. The data further indicate sex dependence of some microRNA markers. The average increase in accuracy in distinguishing ND from control for all and male/female groups is 0.06; the largest increase is for ALS, from 0.83 for all participants to 0.92/0.98 for male/female participants. Conclusions The work presented here suggests the possibility of developing microRNA-based diagnostics for detection and differentiation of NDs. Larger multicenter clinical studies are needed to further evaluate circulating brain-enriched microRNAs as biomarkers for NDs and to investigate their association with other ND biomarkers in clinical trial settings. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jon B Toledo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Present address: Department of Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | | | - David Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Howard I Hurtig
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leo F McCluskey
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren B Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging, Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
12
|
Search of MicroRNAs Regulating the Receptor Status of Breast Cancer In Silico and Experimental Confirmation of Their Expression in Tumors. Bull Exp Biol Med 2017; 163:655-659. [PMID: 28944429 DOI: 10.1007/s10517-017-3872-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 12/18/2022]
Abstract
MicroRNA whose expression depends on the receptor status of breast cancer were selected using bioinformatic analysis. The expression of 9 microRNAs (16, 17, 21, 27, 125, 146, 155, 200a, and 221) was analyzed in 76 samples of breast cancer with various receptor phenotypes. The expression of microRNAs 155, 27, and 200a did not differ in various types of breast cancer. The data on positive correlation between the expression of microRNA-21 and microRNA-221 and negative receptor status of the tumor were confirmed. The expression of the tumor suppressing microRNA-125b decreased in samples of breast cancer expressing HER2 and ER and in triple negative breast cancer, which characterizes it as a universal marker of breast cancer. An increase in the expression of microRNA-16 was shown in samples of breast cancer expressing HER2 and ER. The expression of microRNA-17 decreased in triple negative breast cancer and increased in ER+, PR+, and HER+ types of breast cancer. MicroRNAs 16, 17, 21, 125b, 146b, and 221 can be promising markers for differential diagnostics of various phenotypes of breast cancer.
Collapse
|
13
|
Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: alarm signal in cancer? Oncotarget 2017; 8:71206-71222. [PMID: 29050357 PMCID: PMC5642632 DOI: 10.18632/oncotarget.19331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Soon after microRNAs entered the stage as novel regulators of gene expression, they were found to regulate -and to be regulated by- the development, progression and aggressiveness of virtually all human types of cancer. Therefore, miRNAs in general harbor a huge potential as diagnostic and prognostic markers as well as potential therapeutic targets in cancer. The miR-17-92 cluster was found to be overexpressed in many human cancers and to promote unrestrained cell growth, and has therefore been termed onco-miR-1. In addition, its expression is often dysregulated in many other diseases. MiR-17-5p, its most prominent member, is an essential regulator of fundamental cellular processes like proliferation, autophagy and apoptosis, and its deficiency is neonatally lethal in the mouse. Many cancer types are associated with elevated miR-17-5p expression, and the degree of overexpression might correlate with cancer aggressiveness and responsiveness to chemotherapeutics - suggesting miR-17-5p to be an alarm signal. Liver, gastric or colorectal cancers are examples where miR-17-5p has been observed exclusively as an oncogene, while, in other cancer types, like breast, prostate and lung cancer, the role of miR-17-5p is not as clear-cut, and it might also act as tumor-suppressor. However, in all cancer types studied so far, miR-17-5p has been found at elevated levels in the circulation. In this review, we therefore recapitulate the current state of knowledge about miR-17-5p in the context of cancer, and suggest that elevated miR-17-5p levels in the plasma might be a sensitive and early alarm signal for cancer ('alarmiR'), albeit not a specific alarm for a specific type of tumor.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,TAmiRNA GmbH, Vienna, Austria
| |
Collapse
|
14
|
Circulating miRNAs as novel diagnostic biomarkers in hepatocellular carcinoma detection: a meta-analysis based on 24 articles. Oncotarget 2017; 8:66402-66413. [PMID: 29029522 PMCID: PMC5630422 DOI: 10.18632/oncotarget.18949] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
The diagnostic value and suitability of circulating miRNAs for the detection of hepatocellular carcinoma have been inconsistent in the literature. A meta-analysis is used to systematically evaluate the diagnostic value of circulating miRNAs. Eligible studies were selected and the heterogeneity was assessed by subgroup analysis, meta-regression, and publication bias. After strictly and comprehensive screening, the source methods, internal reference and the cut-off values of the included miRNAs were first listed. Circulating miRNAs demonstrated a relatively good diagnostic value in hepatocellular carcinoma, In the subgroup analysis, diagnosis odds ratio showed a higher accuracy with multiple miRNAs than with a single miRNA as well as with serum types than plasma types. In addition, although miRNAs have many expression patterns, the high frequency expression miRNAs (miR-21, miR-199 and miR-122) might be more specific for the diagnosis of hepatocellular carcinoma.The sources of heterogeneity might be related to the number of miRNAs and the specimen types in meta-regression. Furthermore, it’s surprised that the pooled studies were first demonstrated publication bias (P < 0.05). In conclusion, multiple miRNAs in serum have a better diagnostic value, and the publication bias was stable. To validate the potential applicability of miRNAs in the diagnosis of hepatocellular carcinoma, more rigorous studies are needed to confirm these conclusions.
Collapse
|
15
|
Jin L, Zhang Z, Li Y, He T, Hu J, Liu J, Chen M, Gui Y, Chen Y, Lai Y. miR-125b is associated with renal cell carcinoma cell migration, invasion and apoptosis. Oncol Lett 2017; 13:4512-4520. [PMID: 28599452 PMCID: PMC5453059 DOI: 10.3892/ol.2017.5985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-125b has been identified as deregulated in a number of types of cancer. Previous studies have detected the expression of miR-125b in clear cell renal cell carcinoma (ccRCC) tissues by in situ hybridization and revealed that miR-125b was upregulated in ccRCC tissues, and was associated with recurrence and survival of patients with ccRCC. However, the function of miR-125b in RCC remains unclear. Thus, the expression of miR-125b was detected with quantitative polymerase chain reaction (qPCR) in 24 paired RCC and adjacent normal tissues. The result of qPCR showed that miR-125b was upregulated in RCC tissues. Furthermore, the function of miR-125b in RCC (786-O and ACHN) cells was detected by transfecting miR-125 mimic or inhibitor to upregulate or downregulate miR-125b expression. Cell proliferation assays (MTT and Cell Counting Kit-8), cell mobility assays (cell scratch and Transwell assay) and a cell apoptotic assay (flow cytometry assay) were performed to assess the function of miR-125b on RCC cells. Results from the assays demonstrated that overexpression of miR-125b could promote cell migration and invasion, and reduce the cell apoptotic rate. It was also revealed that downregulation of miR-125b could reduce cell migration and invasion, and induce cell apoptosis. However, the results of the cell proliferation assay revealed that miR-125b had no significant effect on cell proliferation. Not only could miR-125b predict recurrence and survival of ccRCC; the present study revealed that miR-125b could regulate RCC cell migration, invasion and apoptosis. Additional studies are required to determine the mechanism of miR-125b in RCC cells and define the target genes of miR-125b in RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Yun Chen, Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|