1
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
2
|
Lv J, Gao R, Wang Y, Huang C, Wu R. Protective effect of leukemia inhibitory factor on the retinal injury induced by acute ocular hypertension in rats. Exp Ther Med 2022; 25:19. [PMID: 36561619 PMCID: PMC9748713 DOI: 10.3892/etm.2022.11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide. As such, neuroprotective therapy is essential for the treatment of this disease. Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family and the LIF signaling pathway is considered to be one of the major endogenous factors mediating neuroprotection in the retina. Therefore, the present study aimed to investigate the possible effects of LIF in acute ocular hypertension (AOH). The intraocular pressure in rat eyes was raised to 110 mmHg for 1 h by infusing the anterior chamber with normal saline to establish the AOH model. In the treatment group, LIF was then injected into the vitreous cavity after AOH was ceased. The retinal tissues were obtained after the termination of AOH, and H&E staining was conducted to assess the morphological damage. The number of retinal ganglion cells (RGCs) was counted using the Fluoro-Gold retrograde staining method. TUNEL staining was used to determine the extent of apoptosis among the retinal cells. In addition, the protein expression levels of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), STAT3 and components of the AKT/mTOR/70-kDa ribosomal protein S6 kinase (p70S6K) signaling pathway were examined by western blotting. The results showed that AOH induced tissue swelling and structural damage in the retina, which were reversed by LIF injection. In the LIF treatment group, RGC loss was significantly inhibited and the quantity of TUNEL-stained cells was also significantly reduced, whereas the expression of cleaved caspase-3 and PARP was decreased. Furthermore, increased phosphorylation of STAT3, AKT, mTOR and p70S6K was observed after LIF treatment. By contrast, pretreatment with the STAT3 inhibitor C188-9 or the PI3K/AKT/mTOR inhibitor LY3023414 reversed the LIF-induced inhibition of RGC loss. These results suggested that exogenous LIF treatment inhibited the retinal damage induced by AOH, which was associated with the activation of STAT3 and mTOR/p70S6K signaling. Therefore, LIF may serve a role in neuroprotection for glaucoma treatment.
Collapse
Affiliation(s)
- Jiexuan Lv
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Ruxin Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Shaanxi Provincial Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Shaanxi Clinical Study Center for Ocular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Medical School, Northwest University, Xi'an, Shaanxi 710002, P.R. China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China,Department of Glaucoma, Shanghai Peace Eye Hospital, Shanghai 200437, P.R. China,Correspondence to: Professor Renyi Wu, Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, 336 Xiahe Road, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
3
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
4
|
Human Umbilical Cord-Mesenchymal Stem Cells Survive and Migrate within the Vitreous Cavity and Ameliorate Retinal Damage in a Novel Rat Model of Chronic Glaucoma. Stem Cells Int 2021; 2021:8852517. [PMID: 34733333 PMCID: PMC8560304 DOI: 10.1155/2021/8852517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and pathologically elevated intraocular pressure (IOP) is the major risk factor. Neuroprotection is one of the potential therapies for glaucomatous retinal damage. Intravitreal mesenchymal stem cell (MSC) transplantation provides a viable therapeutic option, and human umbilical cord- (hUC-) MSCs are attractive candidates for cell-based neuroprotection. Here, we investigated the ability of transplanted hUC-MSCs to survive and migrate within the vitreous cavity and their neuroprotective effects on chronic glaucomatous retina. For this, we developed a chronic ocular hypertension (COH) rat model through the intracameral injection of allogeneic Tenon's fibroblasts. Green fluorescent protein-transduced hUC-MSCs were then injected into the vitreous cavity one week after COH induction. Results showed that a moderate IOP elevation lasted for two months. Transplanted hUC-MSCs migrated toward the area of damaged retina, but did not penetrate into the retina. The hUC-MSCs survived for at least eight weeks in the vitreous cavity. Moreover, the hUC-MSCs were efficient at decreasing the loss of retinal ganglion cells; retinal damage was attenuated through the inhibition of apoptosis. In this study, we have developed a novel COH rat model and demonstrated the prolonged neuroprotective potential of intravitreal hUC-MSCs in chronic glaucoma.
Collapse
|
5
|
Liu XB, Liu F, Liang YY, Yin G, Zhang HJ, Mi XS, Zhang ZJ, So KF, Li A, Xu Y. Luteolin delays photoreceptor degeneration in a mouse model of retinitis pigmentosa. Neural Regen Res 2021; 16:2109-2120. [PMID: 33642401 PMCID: PMC8343326 DOI: 10.4103/1673-5374.303537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury, whereby it can inhibit microglial neurotoxicity. Therefore, luteolin holds the potential to be useful for treatment of retinal diseases. The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice, a slow photoreceptor-degenerative model of retinitis pigmentosa. Luteolin (100 mg/kg) intraperitoneally injected daily from postnatal day 14 (P14) to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25. Moreover, it increased the survival of photoreceptors and improved retinal structure. Mechanistically, luteolin treatment attenuated increases in reactive oxygen species, photoreceptor apoptosis, and reactive gliosis; increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines; and lowered the ratio of phospho-JNK/JNK. Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin, suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway. Therefore, luteolin may be useful as a supplementary treatment for retinitis pigmentosa. This study was approved by the Qualified Ethics Committee of Jinan University, China (approval No. IACUC-20181217-02) on December 17, 2018.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Gang Yin
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Hui-Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xue-Song Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Bao Y, Liu F, Liu X, Huang M, He L, Ramakrishna S, Luo H, Hu H, Li H, Xu Y. Methyl 3,4-dihydroxybenzoate protects retina in a mouse model of acute ocular hypertension through multiple pathways. Exp Eye Res 2019; 181:15-24. [PMID: 30633922 DOI: 10.1016/j.exer.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
Methyl 3,4 dihydroxybenzoate (MDHB) is a small molecule that shows neuroprotective effects in vitro and in a photoreceptor-degenerative mouse model. Here we investigated whether MDHB protects retina in a mouse model of acute ocular hypertension (AOH) and explores the underlying mechanisms. AOH was induced in mice by increasing intraocular pressure to approximately 90 mmHg for 60 min, then MDHB or vehicle was intraperitoneally injected daily up to 7 days. Immunostaining and multi-electrode array recordings were performed to examine the structure and function of retinas receiving the treatments. Western-blotting was applied to test the expression of several proteins related to oxidative stress and brain-derived neurotrophic factor (BDNF)-initiated signaling. Results showed that AOH injury reduced the number of Brn3a-stained retinal ganglion cells (RGCs) and ChAT-amacrine cells; thinned the inner retinal layers and induced apoptosis. Physiologically, AOH decreased the response of OFF and ON-OFF RGCs. All of these changes were reversed by MDHB-treatment. Mechanistically, MDHB appeared to work on three parallel pathways: (1) MDHB decreased the production of reactive oxygen species, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and cytosol heme oxygenase 1 (HO-1); (2) It upregulated the expression of BDNF and its receptor tropomyosin-related kinase B (TrkB), and activated the downstream AKT pathways; (3) It inhibited reactive gliosis by reducing GFAP and Iba-1 expression. Thus our results suggest that MDHB protects retina against AOH injury by inhibiting oxidative stress, activating the BDNF/AKT signaling and inhibiting inflammatory pathways. Therefore, MDHB may serve as a promising candidate to treat retinal ischemia.
Collapse
Affiliation(s)
- Yiqin Bao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Xiaobin Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Mi Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Seeram Ramakrishna
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518000, China.
| | - Hongying Li
- Department of Anatomy, School of Medicine, Jinan University, Guangzhou, China.
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.
| |
Collapse
|
7
|
Protection of Kaempferol on Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1610751. [PMID: 30584457 PMCID: PMC6280232 DOI: 10.1155/2018/1610751] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 01/08/2023]
Abstract
The protection of retinal pigment epithelium (RPE) injury plays an important role in the prevention of or in delaying the pathological progress of retinal degeneration diseases, like age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa. Oxidative stress has been identified as a major inducer of RPE injury, which eventually could lead to a loss of vision. Kaempferol is a natural flavonoid widely distributed in many edible plants, fruits, and traditional medicines and has been reported to have antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. The present study demonstrates that the total antioxidant capacity of kaempferol is approximately two times stronger than that of lutein which is also a natural antioxidant that is widely used in the prevention or treatment of AMD. Our data indicates that kaempferol protects human RPE cells (ARPE-19) from hydrogen peroxide- (H2O2-) induced oxidative cell damage and apoptosis through the signaling pathways involving Bax/Bcl-2 and caspase-3 molecules proofed by real-time PCR and Western blot results. Kaempferol also inhibits the upregulated vascular endothelial growth factor (VEGF) mRNA expression levels induced by H2O2 in ARPE-19 cells and affects the oxidation and antioxidant imbalanced system in ARPE-19 cells treated by H2O2 through the regulations of both the activities of reactive oxygen species (ROS) and superoxide dismutase (SOD). Furthermore, our in vivo experimental results show that in sodium iodate-induced retinal degeneration rat model, kaempferol could protect sodium iodate-induced pathological changes of retina tissue and retinal cells apoptosis as well as the upregulated VEGF protein expression in RPE cells. In summary, these novel findings demonstrate that kaempferol could protect oxidative stressed-human RPE cell damage through its antioxidant activity and antiapoptosis function, suggesting that kaempferol has a potential role in the prevention and therapeutic treatment of AMD or other retinal diseases mediated by oxidative stress.
Collapse
|
8
|
Inafuku S, Klokman G, Connor KM. The Alternative Complement System Mediates Cell Death in Retinal Ischemia Reperfusion Injury. Front Mol Neurosci 2018; 11:278. [PMID: 30174588 PMCID: PMC6107794 DOI: 10.3389/fnmol.2018.00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Ischemia reperfusion (IR) injury induces retinal cell death and contributes to visual impairment. Previous studies suggest that the complement cascade plays a key role in IR injury in several systemic diseases. However, the role of the complement pathway in the ischemic retina has not been investigated. The aim of this study is to determine if the alternative complement cascade plays a role in retinal IR injury, and identify which components of the pathway mediate retinal degeneration in response to IR injury. To accomplish this, we utilized the mouse model of retinal IR injury, wherein the intraocular pressure (IOP) is elevated for 45 min, collapsing the retinal blood vessels and inducing retinal ischemia, followed by IOP normalization and subsequent reperfusion. We found that mRNA expression of complement inhibitors complement receptor 1-related gene/protein-y (Crry), Cd55 and Cd59a was down-regulated after IR. Moreover, genetic deletion of complement component 3 (C3−/−) and complement factor b (Fb−/−) decreased IR-induced retinal apoptosis. Because vascular dysfunction is central to IR injury, we also assessed the role of complement in a model of shear stress. In human retinal endothelial cells (HRECs), shear stress up-regulated complement inhibitors Cd46, Cd55, and Cd59, and suppressed complement-mediated cell death, indicating that a lack of vascular flow, commonly observed in IR injury, allows for complement mediated attack of the retinal vasculature. These results suggested that in retinal IR injury, the alternative complement system is activated by suppression of complement inhibitors, leading to vascular dysfunction and neuronal cell death.
Collapse
Affiliation(s)
- Saori Inafuku
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Garrett Klokman
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Kip M Connor
- Angiogenesis Laboratory, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
9
|
Zhao PY, Wang YQ, Liu XH, Zhu YJ, Zhao H, Zhang QX, Qi F, Li JL, Zhang N, Fan YP, Li KN, Zhao YY, Lei JF, Wang L. Bu Shen Yi Sui capsule promotes remyelination correlating with Sema3A/NRP-1, LIF/LIFR and Nkx6.2 in mice with experimental autoimmune encephalomyelitis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:36-48. [PMID: 29428242 DOI: 10.1016/j.jep.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu Shen Yi Sui capsule (BSYSC), based on traditional Chinese formula Liu Wei Di Huang pill, is effective for the treatment of multiple sclerosis (MS) in clinical experience and trials. Our previous studies confirmed that BSYSC had the neuroprotective effect in MS and its animal model, experimental autoimmune encephalomyelitis (EAE); however, its mechanism of action was not clear. Thus, the effect of BSYSC on remyelination and the underlying mechanisms were investigated in the EAE mice. MATERIALS AND METHODS The EAE model was established by injecting subcutaneously myelin oligodendrocyte protein (MOG) 35-55 in mice. Mice were treated with BSYSC (3.02 g/kg) or vehicle daily by oral gavage for 40 days. The body weight and clinical score of mice were evaluated. Brain was observed by magnetic resonance imaging. The inflammation infiltrate of brain and spinal cord was determined by hematoxylin-eosin staining, while the structure of myelin sheath was visualized by transmission electron microscopy on days 23 and 40 post immunization (dpi), respectively. The protein and mRNA levels of platelets-derived growth factor receptor (PDGFR) α and 2', 3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were measured by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction. The protein expressions of semaphorins (Sema) 3A, Neuropilin (NRP) - 1, leukemia inhibitory factor (LIF), LIF receptor (LIFR) and Nkx6.2 were further investigated by western blot. RESULTS BSYSC treatment improved the body weight and clinical score of EAE mice, alleviated inflammatory infiltration and nerve fiber injuries. It also protected the ultrastructural integrity of myelin sheath. BSYSC significantly increased expressions of PDGFRα and CNPase in mice with EAE on 40 dpi. Furthermore, BSYSC treatment increased the expressions of LIF, LIFR and Nkx6.2 and reduced Sema3A and NRP-1 in EAE mice on 40 dpi. CONCLUSIONS The data demonstrated that BSYSC exhibited the neuroprotective effect against EAE by promoting oligodendrocyte progenitor cells (OPCs) proliferation and differentiation, thus facilitating remyelination. Sema3A/NRP-1, LIF/LIFR and Nkx6.2 are likely contributed to the effects of BSYSC on OPCs.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Administration, Oral
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/ultrastructure
- Capsules
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Homeodomain Proteins/metabolism
- Leukemia Inhibitory Factor/metabolism
- Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism
- Mice, Inbred C57BL
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Myelin-Oligodendrocyte Glycoprotein
- Neuropilin-1/metabolism
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Oligodendrocyte Precursor Cells/drug effects
- Oligodendrocyte Precursor Cells/metabolism
- Oligodendrocyte Precursor Cells/pathology
- Peptide Fragments
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Semaphorin-3A/metabolism
- Signal Transduction/drug effects
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/ultrastructure
- Time Factors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Pei-Yuan Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Yong-Qiang Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Xi-Hong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Ying-Jun Zhu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Jun-Ling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China
| | - Yong-Ping Fan
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kang-Ning Li
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan-Yuan Zhao
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Jian-Feng Lei
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing 100069, China.
| |
Collapse
|
10
|
Li H, Yao J, Chang X, Wu J, Duan T, Wang K. LIFR increases the release of soluble endoglin via the upregulation of MMP14 expression in preeclampsia. Reproduction 2018; 155:297-306. [PMID: 29363569 DOI: 10.1530/rep-17-0732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder that is the main cause of maternal and perinatal morbidity and mortality worldwide. Inadequate trophoblastic invasion and endothelial dysfunction in the placenta are considered the foundation of the pathogenesis of preeclampsia in which soluble endoglin (sENG) plays an antiangiogenic role in the development of PE. The leukemia inhibitory factor receptor (LIFR) has been widely studied and is highly involved in arterial injury in vivo and in the migration of cancer cells in vitro Here, we tested the hypothesis that LIFR may be correlated with preeclampsia through its regulation of the release of sENG. Our data showed that LIFR protein, the expression of which significantly decreased with the progression of pregnancy, was located in the syncytiotrophoblast and cytotrophoblast. The LIFR protein level was increased in pregnancies with preeclampsia compared with normotensive full-term pregnancies. After the overexpression of LIFR in HTR8/SVneo cells, the release of sENG as well as the migration and invasion were significantly enhanced. Moreover, we also observed that LIFR induced the expression of matrix metalloproteinase14 (MMP14) and that the knockdown or inhibition of MMP14 decreased the release of sENG, as well as increased the LIFR-induced migration and invasion of HTR8/SVneo cells. These studies demonstrated that LIFR promoted the release of sENG through MMP14 in vitro, which indicates that LIFR may be involved in the development of preeclampsia.
Collapse
Affiliation(s)
- Hua Li
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Julei Yao
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinwen Chang
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinting Wu
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Duan
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China .,Department of ObstetricsShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Morrison JC, Cepurna WO, Tehrani S, Choe TE, Jayaram H, Lozano DC, Fortune B, Johnson EC. A Period of Controlled Elevation of IOP (CEI) Produces the Specific Gene Expression Responses and Focal Injury Pattern of Experimental Rat Glaucoma. Invest Ophthalmol Vis Sci 2017; 57:6700-6711. [PMID: 27942722 PMCID: PMC5156512 DOI: 10.1167/iovs.16-20573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine if several hours of controlled elevation of IOP (CEI) will produce the optic nerve head (ONH) gene expression changes and optic nerve (ON) damage pattern associated with early experimental glaucoma in rats. Methods The anterior chambers of anesthetized rats were cannulated and connected to a reservoir to elevate IOP. Physiologic parameters were monitored. Following CEI at various recovery times, ON cross-sections were graded for axonal injury. Anterior ONHs were collected at 0 hours to 10 days following CEI and RNA extracted for quantitative PCR measurement of selected messages. The functional impact of CEI was assessed by electroretinography (ERG). Results During CEI, mean arterial pressure (99 ± 6 mm Hg) and other physiologic parameters remained stable. An 8-hour CEI at 60 mm Hg produced significant focal axonal degeneration 10 days after exposure, with superior lesions in 83% of ON. Message analysis in CEI ONH demonstrated expression responses previously identified in minimally injured ONH following chronic IOP elevation, as well as their sequential patterns. Anesthesia with cannulation at 20 mm Hg did not alter these message levels. Electroretinographic A- and B-waves, following a significant reduction at 2 days after CEI, were fully recovered at 2 weeks, while peak scotopic threshold response (pSTR) remained mildly but significantly depressed. Conclusions A single CEI reproduces ONH message changes and patterns of ON injury previously observed with chronic IOP elevation. Controlled elevation of IOP can allow detailed determination of ONH cellular and functional responses to an injurious IOP insult and provide a platform for developing future therapeutic interventions.
Collapse
Affiliation(s)
- John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - William O Cepurna
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Shandiz Tehrani
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Tiffany E Choe
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Hari Jayaram
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States 2Glaucoma Service, NIHR Moorfields Biomedical Research Centre, London, United Kingdom
| | - Diana C Lozano
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Portland, Oregon, United States
| | - Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|