1
|
Xia P, Ma X, Yan L, Lian S, Li X, Luo Y, Chen Z, Ji X. Generation and Application of Monoclonal Antibodies against Porcine S100A8, S100A9, and S100A12 Proteins Using Hybridoma Technology. Int J Mol Sci 2024; 25:1029. [PMID: 38256103 PMCID: PMC10816078 DOI: 10.3390/ijms25021029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
S100A8, S100A9, and S100A12 proteins are important members of the S100 protein family, act primarily as congenital immunomodulators, and are closely related to the occurrence of infectious diseases. There have been few reports on the functional properties of S100A8, S100A9, and S100A12 proteins in swine, but it is certain that porcine S100A8, S100A9, and S100A12 proteins are highly expressed in diseased swine. To address the current lack of reliable and timely detection tools for these three proteins, we generated monoclonal antibodies specific to the porcine S100A8, S100A9, and S100A12 proteins using hybridoma technology. The results of serum sample testing showed that the above monoclonal antibodies specifically recognize the proteins S100A8, S100A9, and S100A12 in the serum and were able to evaluate the content change of these proteins during the infection process. This provides the basis for the use of porcine S100A8, S100A9, and S100A12 in the surveillance and diagnosis of swine diseases and laid a foundation for further understanding their roles in infection, immunity, and inflammation, as well as their potential applications in preventing or treating gastrointestinal tract or inflammatory diseases in swine.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Xin Ma
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Xiangyu Li
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (X.M.); (L.Y.); (S.L.); (X.L.); (Y.L.); (Z.C.); (X.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front Microbiol 2022; 13:1043214. [PMID: 36523835 PMCID: PMC9744969 DOI: 10.3389/fmicb.2022.1043214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
Clostridioides difficile, the most common cause of nosocomial diarrhea, has been continuously reported as a worldwide problem in healthcare settings. Additionally, the emergence of hypervirulent strains of C. difficile has always been a critical concern and led to continuous efforts to develop more accurate diagnostic methods for detection of this recalcitrant pathogen. Currently, the diagnosis of C. difficile infection (CDI) is based on clinical manifestations and laboratory tests for detecting the bacterium and/or its toxins, which exhibit varied sensitivity and specificity. In this regard, development of rapid diagnostic techniques based on antibodies has demonstrated promising results in both research and clinical environments. Recently, application of recombinant antibody (rAb) technologies like phage display has provided a faster and more cost-effective approach for antibody production. The application of rAbs for developing ultrasensitive diagnostic tools ranging from immunoassays to immunosensors, has allowed the researchers to introduce new platforms with high sensitivity and specificity. Additionally, DNA encoding antibodies are directly accessible in these approaches, which enables the application of antibody engineering to increase their sensitivity and specificity. Here, we review the latest studies about the antibody-based ultrasensitive diagnostic platforms for detection of C. difficile bacteria, with an emphasis on rAb technologies.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Peng Z, Liu S, Meng X, Liang W, Xu Z, Tang B, Wang Y, Duan J, Fu C, Wu B, Wu A, Li C. Genome characterization of a novel binary toxin-positive strain of Clostridium difficile and comparison with the epidemic 027 and 078 strains. Gut Pathog 2017; 9:42. [PMID: 28794800 PMCID: PMC5547579 DOI: 10.1186/s13099-017-0191-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background Clostridium difficile is an anaerobic Gram-positive spore-forming gut pathogen that causes antibiotic-associated diarrhea worldwide. A small number of C. difficile strains express the binary toxin (CDT), which is generally found in C. difficile 027 (ST1) and/or 078 (ST11) in clinic. However, we isolated a binary toxin-positive non-027, non-078 C. difficile LC693 that is associated with severe diarrhea in China. The genotype of this strain was determined as ST201. To understand the pathogenesis-basis of C. difficile ST201, the strain LC693 was chosen for whole genome sequencing, and its genome sequence was analyzed together with the other two ST201 strains VL-0104 and VL-0391 and compared to the epidemic 027/ST1 and 078/ST11 strains. Results The project finally generated an estimated genome size of approximately 4.07 Mbp for strain LC693. Genome size of the three ST201 strains ranged from 4.07 to 4.16 Mb, with an average GC content between 28.5 and 28.9%. Phylogenetic analysis demonstrated that the ST201 strains belonged to clade 3. The ST201 genomes contained more than 40 antibiotic resistance genes and 15 of them were predicted to be associated with vancomycin-resistance. The ST201 strains contained a larger PaLoc with a Tn6218 element inserted than the 027/ST1 and 078/ST11 strains, and encoded a truncated TcdC. In addition, the ST201 strains contained intact binary toxin coding and regulation genes which are highly homologous to the 027/ST1 strain. Genome comparison of the ST201 strains with the epidemic 027 and 078 strain identified 641 genes specific for C. difficile ST201, and a number of them were predicted as fitness and virulence associated genes. The presence of those genes also contributes to the pathogenesis of the ST201 strains. Conclusions In this study, the genomic characterization of three binary toxin-positive C. difficile ST201 strains in clade 3 was discussed and compared to the genomes of the epidemic 027 and the 078 strains. Our analysis identified a number fitness and virulence associated genes/loci in the ST201 genomes that contribute to the pathogenesis of C. difficile ST201. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Wan Liang
- MOE Key Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Biao Tang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang China
| | - Yuanguo Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Juping Duan
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China.,Department of Pharmacy, Changsha Hospital of Traditional Chinese Medicine, Changsha, 410000 Hunan China
| | - Chenchao Fu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| |
Collapse
|