1
|
Zubair R, Ishii L, Loyal J, Hartman N, Fabi SG. SPLASH: Split-Body Randomized Clinical Trial of Poly- l -Lactic Acid for Adipogenesis and Volumization of the Hip Dell. Dermatol Surg 2024; 50:1155-1162. [PMID: 39503574 DOI: 10.1097/dss.0000000000004417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Injectable poly- l -lactic acid (PLLA-SCA) increases extracellular matrix to improve skin quality. The hip dell is an underappreciated element of gluteal aesthetics. Adipose tissue has roles in aesthetics and skin functioning. OBJECTIVE To investigate the efficacy of PLLA-SCA treatment to induce adipogenesis and volumize the hip dell. MATERIALS AND METHODS This was a double-blinded, split-body trial of 15 women with hip dell volume deficits. Each subject was randomized to have 1 hip dell treated with 150 mg of PLLA-SCA while the contralateral hip dell received the equivalent volume of saline. Subjects received 3 treatments at 1-month intervals and were followed for 9 months. Assessments included physician global aesthetic improvement scale, ultrasonography, and histologic examination. RESULTS Blinded investigators rated PLLA-SCA-treated hip dells as improved and much improved. The dermis and adipose layers increased in thickness by 26.1% and 27%. These measures, in addition to collagen and elastic fiber quality, were significantly improved compared with saline-treated hip dells, which did not change from baseline. Subject satisfaction was also significantly greater on the PLLA-SCA-treated side. No subject experienced significant adverse effects. CONCLUSION Poly- l -lactic acid is a safe and effective method for durable volumization and aesthetic improvement of the hip dell. PLLA-SCA may promote adipogenesis and elastogenesis.
Collapse
Affiliation(s)
| | - Lisa Ishii
- Aesthetic Solutions, Chapel Hill, North Carolina
| | | | - Nina Hartman
- Washington Institute of Dermatologic Laser Surgery, Washington, District of Columbia;and
| | - Sabrina G Fabi
- Cosmetic Laser Dermatology, San Diego, California
- University of California San Diego, San Diego, California
| |
Collapse
|
2
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Wang X, He K, Ma L, Wu L, Yang Y, Li Y. Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 26:306. [PMID: 35946454 PMCID: PMC9437969 DOI: 10.3892/mmr.2022.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future.
Collapse
Affiliation(s)
- Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Linlin Ma
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lan Wu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
4
|
Casein Kinase 1α as a Regulator of Wnt-Driven Cancer. Int J Mol Sci 2020; 21:ijms21165940. [PMID: 32824859 PMCID: PMC7460588 DOI: 10.3390/ijms21165940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling regulates numerous cellular processes during embryonic development and adult tissue homeostasis. Underscoring this physiological importance, deregulation of the Wnt signaling pathway is associated with many disease states, including cancer. Here, we review pivotal regulatory events in the Wnt signaling pathway that drive cancer growth. We then discuss the roles of the established negative Wnt regulator, casein kinase 1α (CK1α), in Wnt signaling. Although the study of CK1α has been ongoing for several decades, the bulk of such research has focused on how it phosphorylates and regulates its various substrates. We focus here on what is known about the mechanisms controlling CK1α, including its putative regulatory proteins and alternative splicing variants. Finally, we describe the discovery and validation of a family of pharmacological CK1α activators capable of inhibiting Wnt pathway activity. One of the important advantages of CK1α activators, relative to other classes of Wnt inhibitors, is their reduced on-target toxicity, overcoming one of the major impediments to developing a clinically relevant Wnt inhibitor. Therefore, we also discuss mechanisms that regulate CK1α steady-state homeostasis, which may contribute to the deregulation of Wnt pathway activity in cancer and underlie the enhanced therapeutic index of CK1α activators.
Collapse
|
5
|
Feng T, Niu J, Pi B, Lu Y, Wang J, Zhang W, Li B, Yang H, Zhu X. Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro. J Mech Behav Biomed Mater 2019; 101:103451. [PMID: 31585350 DOI: 10.1016/j.jmbbm.2019.103451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revealed that SF-NAC/α-TCP could significantly increase the activity of exocrine ALP and up-regulated expression of bone-related genes. However, NAC up-regulated gene expression could be significantly suppressed by DKK1. We propose that NAC functioning as osteogenic factor by activating the Wnt/β-catenin signaling pathway may be the possible mechanism of up-regulation of osteogenic genes. Bone regeneration in vivo shown in a rat femur defect was enhanced by the addition of NAC in SF/α-TCP. In addition, the combination intensity of cement-bone interface was improved. The combination SF-NAC/α-TCP might be developed into a promising tool for bone tissue repair in the clinic.
Collapse
Affiliation(s)
- Tao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Junjie Niu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yingjie Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinning Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wen Zhang
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Bin Li
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Wu L, Deng L, Hong H, Peng C, Zhang X, Chen Z, Ling J. Comparison of long non‑coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells. Mol Med Rep 2019; 20:939-950. [PMID: 31173189 PMCID: PMC6625187 DOI: 10.3892/mmr.2019.10308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
The dental follicle develops into the periodontal ligament, cementum and alveolar bone. Human dental follicle cells (hDFCs) are the precursor cells of periodontal development. Long non-coding RNAs (lncRNAs) have been revealed to be crucial factors that regulate a variety of biological processes; however, whether lncRNAs serve a role in human periodontal development remains unknown. Therefore, the present study used microarrays to detect the differentially expressed lncRNAs and mRNAs between hDFCs and human periodontal ligament cells (hPDLCs). A total of 845 lncRNAs and 1,012 mRNAs were identified to be differentially expressed in hDFCs and hPDLCs (fold change >2.0 or <-2.0; P<0.05). Microarray data were validated by reverse transcription-quantitative polymerase chain reaction. Bioinformatics analyses, including gene ontology, pathway analysis and coding-non-coding gene co-expression network analysis, were performed to determine the functions of the differentially expressed lncRNAs and mRNAs. Bioinformatics analysis identified that a number of pathways may be associated with periodontal development, including the p53 and calcium signaling pathways. This analysis also revealed a number of lncRNAs, including NR_033932, T152410, ENST00000512129, ENST00000540293, uc021sxs.1 and ENST00000609146, which may serve important roles in the biological process of hDFCs. In addition, the lncRNA termed maternally expressed 3 (MEG3) was identified to be differentially expressed in hDFCs by reverse transcription-quantitative polymerase chain reaction. The knockdown of MEG3 was associated with a reduction of pluripotency makers in hDFCs. In conclusion, for the first time, to the best of our knowledge, the current study determined the different expression profiles of lncRNAs and mRNAs between hDFCs and hPDLCs. The observations made may provide a solid foundation for further research into the molecular mechanisms of lncRNAs in human periodontal development.
Collapse
Affiliation(s)
- Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hong Hong
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Caixia Peng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
7
|
Xiao C, Li W, Lu T, Wang J, Han J. Preptin promotes proliferation and osteogenesis of MC3T3-E1 cells by upregulating β-catenin expression. IUBMB Life 2019; 71:854-862. [PMID: 30729647 DOI: 10.1002/iub.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/25/2022]
Abstract
Preptin, an oligopeptide secreted by pancreatic β-cell, plays a significant role in glycometabolism and bone metabolism. Preptin strengthens proliferation and differentiation of osteoblasts, but the mechanism is unclear. Here, we explored the role of the Wnt/β-catenin signaling pathway which is well known to affect bone development and remodelling in the function of preptin. We found that preptin promoted the cell proliferative activity and osteoblastic differentiation in osteoblast-like MC3T3-E1 cells in a dose-independent manner, as evidenced by elevation in osteogenic genes, alkaline phosphatase activity and alizarin red staining in a dose-independent manner. Additionally, our findings demonstrated that the β-catenin expression level and runt-related transcription factor 2, which is the key downstream target of this pathway, were increased. The Wnt/β-catenin signalling pathway antagonist DKK1 abrogated the proliferative effect and differentiation function of preptin in MC3T3-E1 cells. These data indicated that preptin may be a potential therapeutic target for the treatment of osteoporosis and that osteogenic impact of preptin in MC3T3-E1 cells might be mediated by the Wnt/β-catenin signalling pathway. © 2019 IUBMB Life, 9999(9999):1-9, 2019.
Collapse
Affiliation(s)
- Chunyuan Xiao
- Department of Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianlin Lu
- Department of Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Han
- Department of Rheumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Vykhovanets EP, Luneva SN, Nakoskina NV, Borzunov DY, Mokhovikov DS. [Concentration of several osteotropic growth factors, markers of osteogenesis and biologically active molecules in the blood serum of patients with congenital pseudarthrosis of tibia during orthopaedic treatment with combined technologies]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:525-533. [PMID: 30632981 DOI: 10.18097/pbmc20186406525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Congenital pseudarthrosis of tibia is a genetic, systemic pathology with impaired bone remodeling and unknown pathogenetic mechanisms. Orthopaedic treatment of the disease can fail in some cases. The process of bone remodeling is known to occur under control of local and systemic growth factors, and we sought to explore several osteotropic growth factors, markers of osteogenesis and biologically active molecules in the blood serum of patients with congenital pseudarthrosis of tibia. The study included 12 patients with congenital pseudarthrosis of tibia and anatomical shortening of 2.5±1.1 cm. The' age of patients ranged from 7 years to 18 years. Blood serum was used for enzyme immunoassay analysis. The own blood serum levels of 103 conditionally healthy individuals (of mean age of 13.0±0.27 years) were considered as the norm. Greater changes in the concentration were detected among vascular endothelial and transforming growth factors. The patients showed imbalance in serum TGF, low reparative potential of bone tissue due to osteoclast activation prevailing over differentiation of osteoblasts, progenitor and mesenchymal cells. Dynamics in serum concentration of IGF at the time of frame removal indicated to terminating osteoblast activation and collagen synthesis and concomitant active bone restructuring.
Collapse
Affiliation(s)
- E P Vykhovanets
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| | - S N Luneva
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| | - N V Nakoskina
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| | - D Yu Borzunov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia; Tyumen State Medical University, Tyumen, Russia
| | - D S Mokhovikov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| |
Collapse
|
9
|
Wang G, Gormley M, Qiao J, Zhao Q, Wang M, Di Sante G, Deng S, Dong L, Pestell T, Ju X, Casimiro MC, Addya S, Ertel A, Tozeren A, Li Q, Yu Z, Pestell RG. Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 2018; 8:2251-2263. [PMID: 29721077 PMCID: PMC5928887 DOI: 10.7150/thno.23877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Michael Gormley
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Jing Qiao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Shengqiong Deng
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200120, China
| | - Lin Dong
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tim Pestell
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Mathew C. Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Ayden Tozeren
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, PA 19104
- School of Biomedical Engineering, Systems and Health Sciences, Drexel University, Philadelphia, PA 19104
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
10
|
Salman MM, Kitchen P, Woodroofe MN, Bill RM, Conner AC, Heath PR, Conner MT. Transcriptome Analysis of Gene Expression Provides New Insights into the Effect of Mild Therapeutic Hypothermia on Primary Human Cortical Astrocytes Cultured under Hypoxia. Front Cell Neurosci 2017; 11:386. [PMID: 29311824 PMCID: PMC5735114 DOI: 10.3389/fncel.2017.00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultured under hypoxic conditions for 6 h were investigated. Cells were treated either with or without a mild hypothermic intervention 2 h post-insult to mimic the treatment of patients following traumatic brain injury (TBI) and/or stroke. Using human gene expression microarrays, 411 differentially expressed genes were identified following hypothermic treatment of astrocytes following a 2 h hypoxic insult. KEGG pathway analysis indicated that these genes were mainly enriched in the Wnt and p53 signaling pathways, which were inhibited following hypothermic intervention. The expression levels of 168 genes involved in Wnt signaling were validated by quantitative real-time-PCR (qPCR). Among these genes, 10 were up-regulated and 32 were down-regulated with the remainder unchanged. Two of the differentially expressed genes (DEGs), p38 and JNK, were selected for validation at the protein level using cell based ELISA. Hypothermic intervention significantly down-regulated total protein levels for the gene products of p38 and JNK. Moreover, hypothermia significantly up-regulated the phosphorylated (activated) forms of JNK protein, while downregulating phosphorylation of p38 protein. Within the p53 signaling pathway, 35 human apoptosis-related proteins closely associated with Wnt signaling were investigated using a Proteome Profiling Array. Hypothermic intervention significantly down-regulated 18 proteins, while upregulating one protein, survivin. Hypothermia is a complex intervention; this study provides the first detailed longitudinal investigation at the transcript and protein expression levels of the molecular effects of therapeutic hypothermic intervention on hypoxic human primary cortical astrocytes. The identified genes and proteins are targets for detailed functional studies, which may help to develop new treatments for brain injury based on an in-depth mechanistic understanding of the astrocytic response to hypoxia and/or hypothermia.
Collapse
Affiliation(s)
- Mootaz M Salman
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Philip Kitchen
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - M Nicola Woodroofe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew T Conner
- Research Institute of Health Sciences, Wolverhampton School of Sciences, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
11
|
Wang Z, Wang J, Chen Z, Wang K, Shi L. MicroRNA-1-3p inhibits the proliferation and migration of oral squamous cell carcinoma cells by targeting DKK1. Biochem Cell Biol 2017; 96:355-364. [PMID: 28763625 DOI: 10.1139/bcb-2017-0015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the functional role and mechanism of miR-1-3p and DKK1 in oral squamous cell carcinoma (OSCC) cells. The level of miR-1-3p and DKK1 expression were detected in OSCC tissues and cells using reverse-transcription - quantitative PCR and Western blot. A dual luciferase reporter gene assay was applied to confirm the targeting relationship between miR-1-3p and DKK1. Functional assays, including MTT, Transwell, colony formation, and flow cytometry analysis were conducted to verify their effect on cell progressions. MTT, colony formation, and Transwell assays indicated that the proliferation, migration, and invasion of SCC-4 cells was impaired with high miR-1-3p expression but promoted with high DKK1 expression. The results from cell cycle analysis and annexin-V-PI assays for apoptosis suggested that miR-1-3p suppressed the transit of SCC-4 cells from G0/G1 to S and induced apoptosis. In summary, miR-1-3p suppressed the progression of OSCC by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhenshi Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Jiaolong Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Zhihua Chen
- c Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kun Wang
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| | - Lianshui Shi
- a Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,b Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
12
|
Han Z, Xu Q, Li C, Zhao H. Effects of sulforaphane on neural stem cell proliferation and differentiation. Genesis 2017; 55. [PMID: 28142224 DOI: 10.1002/dvg.23022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Sulforaphane (SFN) is a natural organosulfur compound with anti-oxidant and anti-inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki-67 staining. The level of Tuj-1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β-catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK-1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK-1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhenxian Han
- Department of Pharmacy, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Qian Xu
- Department of Pharmacy, The Third Hospital of Daqing, Daqing, Heilongjiang Province, 163712, China
| | - Changfu Li
- Department of Gastroenterology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163001, China
| | - Hong Zhao
- Key Laboratory of Biological Medicine Preparations, Institute of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| |
Collapse
|