1
|
Assimakopoulos SF, Bhagani S, Aggeletopoulou I, Tsounis EP, Tsochatzis EA. The role of gut barrier dysfunction in postoperative complications in liver transplantation: pathophysiological and therapeutic considerations. Infection 2024; 52:723-736. [PMID: 38324146 PMCID: PMC11143052 DOI: 10.1007/s15010-024-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Gut barrier dysfunction is a pivotal pathophysiological alteration in cirrhosis and end-stage liver disease, which is further aggravated during and after the operational procedures for liver transplantation (LT). In this review, we analyze the multifactorial disruption of all major levels of defense of the gut barrier (biological, mechanical, and immunological) and correlate with clinical implications. METHODS A narrative review of the literature was performed using PubMed, PubMed Central and Google from inception until November 29th, 2023. RESULTS Systemic translocation of indigenous bacteria through this dysfunctional barrier contributes to the early post-LT infectious complications, while endotoxin translocation, through activation of the systemic inflammatory response, is implicated in non-infectious complications including renal dysfunction and graft rejection. Bacterial infections are the main cause of early in-hospital mortality of LT patients and unraveling the pathophysiology of gut barrier failure is of outmost importance. CONCLUSION A pathophysiology-based approach to prophylactic or therapeutic interventions may lead to enhancement of gut barrier function eliminating its detrimental consequences and leading to better outcomes for LT patients.
Collapse
Affiliation(s)
- Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504, Patras, Greece.
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, London, UK
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| |
Collapse
|
2
|
Abozaid ER, Abdel-Kareem RH, Habib MA. A novel beneficial role of humanin on intestinal apoptosis and dysmotility in a rat model of ischemia reperfusion injury. Pflugers Arch 2023; 475:655-666. [PMID: 37020079 PMCID: PMC10105677 DOI: 10.1007/s00424-023-02804-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
A prevalent clinical problem including sepsis, shock, necrotizing enterocolitis, and mesenteric thrombosis is intestinal ischemia/reperfusion (I/R) injury. Humanin (HN), a recently identified mitochondrial polypeptide, exhibits antioxidative and antiapoptotic properties. This work aimed to study the role of HN in a model of experimental intestinal I/R injury and its effect on associated dysmotility. A total of 36 male adult albino rats were allocated into 3 equal groups. Sham group: merely a laparotomy was done. I/R group: for 1 h, clamping of the superior mesenteric artery was done, and then reperfusion was allowed for 2 h later. HN-I/R group: rats underwent ischemia and reperfusion, and 30 min before the reperfusion, they received an intraperitoneal injection of 252 μg/kg of HN. Small intestinal motility was evaluated, and jejunal samples were got for biochemical and histological analysis. I/R group showed elevation of intestinal NO, MDA, TNF- α, and IL-6 and decline of GPx and SOD levels. Furthermore, histologically, there were destructed jejunal villi especially their tips and increased tissue expression of caspase-3 and i-NOS, in addition to reduced small intestinal motility. Compared to I/R group, HN-I/R group exhibited decrease intestinal levels of NO, MDA, TNF- α, and IL-6 and increase GPx and SOD. Moreover, there was noticeable improvement of the histopathologic features and decreased caspase-3 and iNOS immunoreactivity, beside enhanced small intestinal motility. HN alleviates inflammation, apoptosis, and intestinal dysmotility encouraged by I/R. Additionally, I/R-induced apoptosis and motility alterations depend partly on the production of nitric oxide.
Collapse
Affiliation(s)
- Eman R Abozaid
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Reham H Abdel-Kareem
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Marwa A Habib
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
3
|
Mahdy MS, Azmy AF, Dishisha T, Mohamed WR, Ahmed KA, Hassan A, Aidy SE, El-Gendy AO. Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol 2023; 23:53. [PMID: 36864380 PMCID: PMC9979425 DOI: 10.1186/s12866-023-02791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Irinotecan is a chemotherapeutic agent used to treat a variety of tumors, including colorectal cancer (CRC). In the intestine, it is transformed into SN-38 by gut microbial enzymes, which is responsible for its toxicity during excretion. OBJECTIVE Our study highlights the impact of Irinotecan on gut microbiota composition and the role of probiotics in limiting Irinotecan-associated diarrhea and suppressing gut bacterial β-glucuronidase enzymes. MATERIAL AND METHODS To investigate the effect of Irinotecan on the gut microbiota composition, we applied 16S rRNA gene sequencing in three groups of stool samples from healthy individuals, colon cancer, and Irinotecan treated patients (n = 5/group). Furthermore, three Lactobacillus spp.; Lactiplantibacillus plantarum (L. plantarum), Lactobacillus acidophilus (L. acidophilus), Lacticaseibacillus rhamnosus (L. rhamnosus) were used in a single and mixed form to in-vitro explore the effect of probiotics on the expression of β-glucuronidase gene from E. coli. Also, probiotics were introduced in single and mixed forms in groups of mice before the administration of Irinotecan, and their protective effects were explored by assessing the level of reactive oxidative species (ROS) as well as studying the concomitant intestinal inflammation and apoptosis. RESULTS The gut microbiota was disturbed in individuals with colon cancer and after Irinotecan treatment. In the healthy group, Firmicutes were more abundant than Bacteriodetes, which was the opposite in the case of colon-cancer or Irinotecan treated groups. Actinobacteria and Verrucomicrobia were markedly present within the healthy group, while Cyanobacteria were noted in colon-cancer and the Irinotecan-treated groups. Enterobacteriaceae and genus Dialister were more abundant in the colon-cancer group than in other groups. The abundance of Veillonella, Clostridium, Butryicicoccus, and Prevotella were increased in Irinotecan-treated groups compared to other groups. Using Lactobacillus spp. mixture in mice models significantly relieved Irinotecan-induced diarrhea through the reduction of both β-glucuronidase expression and ROS, in addition to guarding gut epithelium against microbial dysbiosis and proliferative crypt injury. CONCLUSIONS Irinotecan-based chemotherapy altered intestinal microbiota. The gut microbiota participates greatly in determining both the efficacy and toxicity of chemotherapies, of which the toxicity of Irinotecan is caused by the bacterial ß-glucuronidase enzymes. The gut microbiota can now be aimed and modulated to promote efficacy and decrease the toxicity of chemotherapeutics. The used probiotic regimen in this study lowered mucositis, oxidative stress, cellular inflammation, and apoptotic cascade induction of Irinotecan.
Collapse
Affiliation(s)
- Marwa S Mahdy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Ahmed F Azmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Tarek Dishisha
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Hassan
- Department of Clinical Oncology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt.
| |
Collapse
|
4
|
Li B, Yuan L, Liu P, Geng Z, Zhang K, Jiang H, Sui H, Zhang B. Moxibustion attenuates inflammation in intestinal mucosal by regulating RAGE-mediated TLR4-NF-κBp65 signaling pathway in vivo and in vitro. Am J Transl Res 2022; 14:4278-4294. [PMID: 35836884 PMCID: PMC9274590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study was performed to investigate the effect of moxibustion on the RAGE/TLR4-NF-κBp65 pathways and mucosal damage in rat model of 5-fluorouracil (5-Fu)-induced intestinal mucositis (IM) and the underlying mechanisms. 5-Fu treatment significantly increased the expression of the receptor for advanced glycation end products (RAGE) and its ligand, thehigh-mobility group box 1 protein (HMGB1), in the rat intestinal tissue. The inhibition of RAGE could induce the repair of intestinal mucosal damage and downregulate the expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-B (NF-κB) p65 in intestinal tissues of 5-Fu-treated rats. Moxibustion treatment significantly improved the physical symptoms and repaired the intestinal mucosal damage of IM rats and increased the expression of tight junction proteins in these rats. The expression of RAGE, HMGB1, TLR4, NF-κBp65, and related downstream inflammatory factors, namely, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, were significantly decreased after moxibustion treatment. A moxibustion dose of 15 min/day exerted a better therapeutic effect than a dose of 30 min/day. The phosphorylation of NF-κBp65 and IκBa is involved in reducing inflammation by regulating the RAGE signaling pathway. Moxibustion can reduce intestinal mucosal damage and inflammation in 5-Fu-induced IM rats via modulation of the RAGE/TLR4-NF-κBp65 signaling pathways.
Collapse
Affiliation(s)
- Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan UniversityShanghai 200433, People’s Republic of China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| | - Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| | - Huiru Jiang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 201803, People’s Republic of China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, People’s Republic of China
| |
Collapse
|
5
|
Chen Y, Pu W, Maswikiti E, Tao P, Li X, Wang D, Gu B, Yu Y, Gao L, Zhao C, Chen H. Intestinal congestion and reperfusion injury: damage caused to the intestinal tract and distal organs. Biosci Rep 2021; 41:BSR20211560. [PMID: 34369557 PMCID: PMC8421592 DOI: 10.1042/bsr20211560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
In clinical practice, intestinal autologous diseases, ailments and organ transplants can cause severe congestive damage to the intestinal tract. However, after the etiological factor is gotten rid of and blood flow is free without any hinderance, further damage to the intestinal wall often occurs, causing other related organ dysfunctions. This ultimately results in intestinal congestion reperfusion injury (ICRI). When the structure and function of the intestine are destroyed, bacteria, metabolites and endotoxins in the intestinal tract perfuse and enter the portal vein through the already compromised intestinal mucosa, to the other organs via the liver. Nevertheless, this gives rise to further aggravation of the injury, and reperfusion injury syndrome occurs. ICRI is a very common complication encountered by clinicians, and its harm is more severe and serious as compared with that caused by ischemia-reperfusion. Quite a few number of studies on ICRI have been reported to date. The exact mechanism of the injury is still idiopathic, and effective treatment strategies are still limited. Based on recent studies, this article is aimed at reviewing the destruction, damage mechanisms resulting from ICRI to the intestinal anatomical sites and distant organs. It is geared towards providing new ideas for the prevention and therapeutic approaches of ICRI.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pediatric Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Weigao Pu
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ewetse Paul Maswikiti
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pengxian Tao
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuemei Li
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dengfeng Wang
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yang Yu
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lei Gao
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chengji Zhao
- Department of Pediatric Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Song W, Sun LY, Zhu ZJ, Wei L, Qu W, Zeng ZG, Yang YS. Characteristics of Gut Microbiota in Children With Biliary Atresia After Liver Transplantation. Front Physiol 2021; 12:704313. [PMID: 34262484 PMCID: PMC8273867 DOI: 10.3389/fphys.2021.704313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Biliary atresia (BA) is an idiopathic neonatal cholestasis and is the most common indication in pediatric liver transplantation (LT). Previous studies have suggested that the gut microbiota (GM) in BA is disordered. However, the effect of LT on gut dysbiosis in patients with BA has not yet been elucidated. Methods Patients with BA (n = 16) and healthy controls (n = 10) were recruited. In the early life of children with BA, Kasai surgery is a typical procedure for restoring bile flow. According to whether BA patients had previously undergone Kasai surgery, we divided the post-LT patients into the with-Kasai group (n = 8) and non-Kasai group (n = 8). Fecal samples were collected in both the BA and the control group; among BA patients, samples were obtained again 6 months after LT. A total of 40 fecal samples were collected, of which 16 were pre-LT, 14 were post-LT (8 were with-Kasai, 6 were non-Kasai), and 10 were from the control group. Metagenomic sequencing was performed to evaluate the GM. Results The Kruskal-Wallis test showed a statistically significant difference in the number of genes between the pre-LT and the control group, the pre-LT and the post-LT group (P < 0.05), but no statistical difference between the post-LT and the control group. Principal coordinate analysis also showed that the microbiome structure was similar between the post-LT and control group (P > 0.05). Analysis of the GM composition showed a significant decrease in Serratia, Enterobacter, Morganella, Skunalikevirus, and Phifllikevirus while short chain fatty acid (SCFA)-producing bacteria such as Roseburia, Blautia, Clostridium, Akkermansia, and Ruminococcus were increased after LT (linear discriminant analysis > 2, P < 0.05). However, they still did not reach the normal control level. Concerning functional profiles, lipopolysaccharide metabolism, multidrug resistance, polyamine biosynthesis, GABA biosynthesis, and EHEC/EPEC pathogenicity signature were more enriched in the post-LT group compared with the control group. Prior Kasai surgery had a specific influence on the postoperative GM. Conclusion LT partly improved the GM in patients with BA, which provided new insight into understanding the role of LT in BA.
Collapse
Affiliation(s)
- Wei Song
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Emodin protects against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway. Biosci Rep 2021; 40:226403. [PMID: 32915230 PMCID: PMC7517261 DOI: 10.1042/bsr20201605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; saline group; acute intestinal injury model group; model + emodin group; model+NF-κB inhibitor pynolidine dithiocarbamate (PDTC) group. Histopathological changes in intestine/lung tissues were observed by Hematoxylin and Eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining. Serum IKBα, p-IKBα, surfactant protein-A (SP-A) and toll-like receptor 4 (TLR4) levels were examined using enzyme-linked immunosorbent assay (ELISA). RT-qPCR was performed to detect the mRNA expression levels of IKBα, SP-A and TLR4 in intestine/lung tissues. Furthermore, the protein expression levels of IKBα, p-IKBα, SP-A and TLR4 were detected by Western blot. Results: The pathological injury of intestinal/lung tissues was remarkedly ameliorated in models treated with emodin and PDTC. Furthermore, the intestinal/lung injury scores were significantly decreased after emodin or PDTC treatment. TUNEL results showed that both emodin and PDTC treatment distinctly attenuated the apoptosis of intestine/lung tissues induced by acute intestinal injury. At the mRNA level, emodin significantly increased the expression levels of SP-A and decreased the expression levels of IKBα and TLR4 in intestine/lung tissues. According to ELISA and Western blot, emodin remarkedly inhibited the expression of p-IKBα protein and elevated the expression of SP-A and TLR4 in serum and intestine/lung tissues induced by acute intestinal injury. Conclusion: Our findings suggested that emodin could protect against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway.
Collapse
|
8
|
Electroacupuncture Pretreatment Attenuates Intestinal Injury after Autogenous Orthotopic Liver Transplantation in Rats via the JAK/STAT Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9187406. [PMID: 32832009 PMCID: PMC7424380 DOI: 10.1155/2020/9187406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 07/15/2020] [Indexed: 01/16/2023]
Abstract
Background Liver transplantation induces self-injury and affects remote organs, such as the lung, kidney, and intestine. Postoperative intestinal dysfunction has been associated with prolonged hospitalization and affects a patient's health and quality of life. Electroacupuncture (EA) has been proven effective in multiple organ protection. However, the potential mechanism underlying the protective effects of EA on intestinal injury after liver transplantation remains unclear. Methods After establishing an autogenous orthotopic liver transplantation (AOLT) model, we studied the effects of EA pretreatment on intestinal injury after AOLT. We used the JAK2-specific inhibitor AG490 to explore the underlying mechanism. Histological analysis and apoptosis assays were used to evaluate intestinal injury. Oxidative stress index and inflammatory response were also measured after AOLT. Furthermore, we detected the phosphorylation levels of JAK2, STAT1, and STAT3 by Western blot. Results We found that pretreatment with EA alleviated intestinal injury after AOLT, as shown by HE staining and TUNEL methods. EA pretreatment inhibited the expressions of p-JAK2, p-STAT1, and p-STAT3 in the intestines after AOLT. Upon treatment with JAK2-specific inhibitor AG490, intestinal injury was balanced. Conclusion The data indicated EA pretreatment alleviated intestinal injury after AOLT by inhibiting the JAK/STAT signaling pathway. These results provide basic evidence to support the potential therapeutic efficacy of EA.
Collapse
|
9
|
Guo X, Shi Y, Du P, Wang J, Han Y, Sun B, Feng J. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA. Life Sci 2019; 239:117020. [PMID: 31678553 DOI: 10.1016/j.lfs.2019.117020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 12/27/2022]
Abstract
AIMS Obstructive sleep apnea (OSA) combined with type 2 diabetes (T2DM) may lead to cognitive dysfunction. We previously reported that cognitive impairment is exacerbated in KKAy mice exposed to intermittent hypoxia (IH), during which the DNA binding protein HMGB1 mediates hippocampal neuronal apoptosis by maintaining microglia-associated neuroinflammation, but the underlying mechanism remains largely unknown. MATERIALS AND METHODS We performed immunofluorescence, Western blotting, and immunohistochemistry experiments in mouse hippocampal tissues and HT22 cells. KKAy type 2 diabetes model mice and normal C57BL/6J mice were exposed to IH or intermittent normoxia. HT22 cells were cultured in high glucose medium and exposed to IH or intermittent normoxia. We transfected HMGB1 siRNA into HT22 cells and then treated them with high glucose combined with intermittent hypoxia. KEY FINDINGS In conclusion, IH aggravated apoptosis and autophagy defects in T2DM mice, and increased the protein expression of HMGB1 and TLR4. This was also confirmed in HG + IH-treated hippocampal HT22 cells. HMGB1 siRNA can significantly reduce the protein expression of HMGB1 and TLR4, reverse neuronal apoptosis and enhance autophagy. SIGNIFICANCE We believe that HMGB1 is a key factor in the regulation of hippocampal neuronal apoptosis and autophagy defects in T2DM combined with OSA. Targeting HMGB1/TLR4 signaling as a novel approach may delay or prevent the increased apoptosis and decreased autophagy induced by T2DM combined with OSA, and may ultimately improve cognitive dysfunction.
Collapse
Affiliation(s)
- Xiangyu Guo
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Yu Shi
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Ping Du
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Jiahui Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Yelei Han
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin Medical University, 300052, Tianjin, China.
| |
Collapse
|
10
|
Chen M, Zhang C, Zhang J, Kai G, Lu B, Huang Z, Ji L. The involvement of DAMPs-mediated inflammation in cyclophosphamide-induced liver injury and the protection of liquiritigenin and liquiritin. Eur J Pharmacol 2019; 856:172421. [DOI: 10.1016/j.ejphar.2019.172421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
11
|
Chen S, Li X, Wang Y, Mu P, Chen C, Huang P, Liu D. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol Med Rep 2019; 19:3633-3641. [PMID: 30864725 PMCID: PMC6471656 DOI: 10.3892/mmr.2019.10018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3-kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress-induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D-lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8-iso-prostaglandin F2α (8-iso-PGF2α). The protein expression levels of p85, phosphorylated (p)-p85, protein kinase B (Akt), p-Akt and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF-α, IL-1β, IL-6, MDA and 8-iso-PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.
Collapse
Affiliation(s)
- Sufang Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Panwei Mu
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pinjie Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dezhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
12
|
Lv P, Chen T, Liu P, Zheng L, Tian J, Tan F, Chen J, Deng Y, Li J, Cai J, Chi X. Dexmedetomidine Attenuates Orthotopic Liver Transplantation-Induced Acute Gut Injury via α 2-Adrenergic Receptor-Dependent Suppression of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9426368. [PMID: 31827710 PMCID: PMC6885230 DOI: 10.1155/2019/9426368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Patients with orthotopic liver transplantation (OLT) frequently develop acute gut injury (AGI), and dexmedetomidine (Dex) has been reported to exert a protective effect against AGI. We investigated whether Dex protects against AGI through antioxidative stress effects by the Nrf2/HO-1 antioxidative signaling pathway. Rats were randomly allocated into a sham group and six orthotopic autologous liver transplantation (OALT) groups receiving different doses of Dex together with/without α 2-adrenergic receptor (AR) blockers. Intestinal tissues were collected to visualize the barrier damage and to measure the indexes of oxidative stress. For in vitro studies, rat intestinal recess epithelial cells (IEC-6) underwent hypoxia/reoxygenation (H/R), and the protective role of Dex was evaluated after α 2A-AR siRNA silencing. OALT resulted in increased oxidative stress, significant intestinal injury, and barrier dysfunction. Dex attenuated OALT-induced oxidative stress and intestinal injury, which was abolished by the pretreatment with the nonspecific α 2A-AR siRNA blocker atipamezole and the specific α 2A-AR siRNA blocker BRL-44408, but not by the specific 2B/C-AR siRNA blocker ARC239. Silencing of α 2A-AR siRNA also attenuated the protective role of Dex on alleviating oxidative stress in IEC-6 cells subjected to H/R. Dex exerted its protective effects by activating Nrf2/HO-1 antioxidative signaling. Collectively, Dex attenuates OALT-induced AGI via α 2A-AR-dependent suppression of oxidative stress, which might be a novel potential therapeutic target for OALT-induced AGI.
Collapse
Affiliation(s)
- Peibiao Lv
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Meizhou, Guangdong 514700, China
| | - Tufeng Chen
- Department of Gastroenterological Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Peibin Liu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Jingling Tian
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Fan Tan
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Jiaxin Chen
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Yingqing Deng
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
| | - Jun Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Yuedong Hospital, Meizhou, Guangdong 514700, China
| | - Jun Cai
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518017, China
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
13
|
Ren G, Yuan X, Zhao X, Hao Q, Cao J, Wang Y, Gao Q, Dou J, Zeng Q. Characterization and evolution of intestine injury at the anhepatic phase in portal hypertensive rats. Exp Ther Med 2018; 16:4765-4771. [PMID: 30542431 DOI: 10.3892/etm.2018.6800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the characteristics and progression of intestinal injury at the anhepatic phase in portal hypertensive rats. A total of 120 healthy male Wistar rats were purchased, with 15 rats in the normal control group and 105 rats were assigned to establish a prehepatic portal hypertension model. The 105 model rats were further divided into seven treatment groups following ischemia-reperfusion. Meanwhile, portal vein pressure, the area of lower esophageal mucosal vein, endotoxin levels in portal vein blood and the level of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Morphology changes of the intestine were observed using optical microscopy and transmission electron microscopy. A portal hypertension rat model was successfully established. Furthermore, endotoxin, MDA and SOD level reached a peak at 12-24 h following reperfusion and then decreased gradually to normal levels at 1 week following reperfusion. However, cytological damage did not recover to preoperative level within 1 week. These findings suggest that intestinal injury was most severe within 12-24 h following ischemia-reperfusion and most indicators recovered to almost normal levels. Therefore, further study on the intestinal mucosal damage is required, with the aim to reduce the production of intestinal endotoxin.
Collapse
Affiliation(s)
- Guijun Ren
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaoye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qingchun Hao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qingjun Gao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jian Dou
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
14
|
Shi L, Dai Y, Jia B, Han Y, Guo Y, Xie T, Liu J, Tan X, Ding P, Li J. The inhibitory effects of Qingchang Wenzhong granule on the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium-induced colitis. J Cell Biochem 2018; 120:9979-9991. [PMID: 30548311 DOI: 10.1002/jcb.28280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a kind of complex immune disease, the pathogenesis of which remains elusive. Destruction of the intestinal barrier, extreme inflammation, oxidative stress, and apoptosis might play key roles in the development of UC. In previous studies, we observed that Qingchang Wenzhong granule (QCWZG) had the exact effect on the remission of UC in the clinic; however, the underlying mechanism has not been identified. This study aimed to reveal the effects of QCWZG on the intestinal physical barrier and the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium (DSS)-induced colitis. METHODS Sixty rats were randomly divided into six groups: blank group, model group, high/mild/low-dose QCWZG groups, and mesalazine group. The rats in the experimental group drank 4% DSS for 7 days and 1% DSS for the subsequent 7 days. Different medications or distilled water was supplied by intragastric administration for 7 days. The levels of colitis and indices related to inflammation, oxidative stress, and apoptosis were assessed. RESULTS Compared with the model group, the QCWZG group (P < 0.05) demonstrated attenuated disease activity index, colonic mucosa disease index, histological lesions, and colonic weights; lower levels of inflammatory substances, such as interleukin (IL)-1α, IL-6, tumor necrosis factor-α, and myeloperoxidase; lower levels of malondialdehyde; and increased levels of superoxide dismutase and glutathione peroxidase. The QCWZG group also demonstrated elevated expression of Bcl-2 and occluding but downregulated db expression of Bax and caspase 3 in the colon. CONCLUSION QCWZG could relieve rats with DSS-induced colitis from UC symptoms by improving the intestinal physical barrier, which resists the interactive network of inflammation, oxidative stress, apoptosis, and their overactivated interactions.
Collapse
Affiliation(s)
- Lei Shi
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Dai
- Department of Pharmacotherapy and Oriental Medicine, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Boyi Jia
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yafei Han
- Department of Clinical Medicine of Integrated Chinese and Western Medicine of TCM College of Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Guo
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhong Xie
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Liu
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Tan
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Panghua Ding
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N, Halbgebauer R, Groß R, Barth T, Lechel A, Walter BM, Kraus JM, Wiegreffe C, Grimm J, Scheffold A, Schneider MR, Peuker K, Zeißig S, Britsch S, Rose-John S, Vettorazzi S, Wolf E, Tannapfel A, Steinestel K, Reber SO, Walther P, Kestler HA, Radermacher P, Barth TF, Huber-Lang M, Kleger A, Seufferlein T. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. J Clin Invest 2018; 128:5056-5072. [PMID: 30320600 DOI: 10.1172/jci97912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Ann K Ellwanger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christiane Schwerdt
- Waldkrankenhaus "Rudolph Elle" Eisenberg, Lehrstuhl für Orthopädie Uniklinik Jena, Jena, Germany
| | - Lucas Bettac
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Ninel Azoitei
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rüdiger Groß
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tabea Barth
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benjamin M Walter
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | | | - Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Kenneth Peuker
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Sebastian Zeißig
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | | | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
16
|
Efficacy and Safety of Probiotics and Synbiotics in Liver Transplantation. Pharmacotherapy 2018; 38:758-768. [DOI: 10.1002/phar.2130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Zan J, Song L, Wang J, Zou R, Hong F, Zhao J, Cheng Y, Xu M. Role of ghrelin in small intestinal motility following pediatric intracerebral hemorrhage in mice. Mol Med Rep 2017; 16:6958-6966. [DOI: 10.3892/mmr.2017.7468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
|
18
|
Zhang Q, Su M. Sufentanil attenuates oxaliplatin cytotoxicity via inhibiting connexin 43‑composed gap junction function. Mol Med Rep 2017; 16:943-948. [PMID: 28586033 DOI: 10.3892/mmr.2017.6669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Comprehensive strategies for the treatment of colorectal cancer (CRC) have become increasingly important. One of the most important factors is pain relief. Therefore, patients with CRC are concurrently treated with analgesics and chemotherapeutic agents; however, the effects of analgesics on the therapeutic activity of chemotherapeutic agents remain largely unknown. The present study investigated the effects of three widely used analgesics in clinics: Fentanyl, remifentanil and sufentanil, on the cytotoxicity of oxaliplatin, a commonly used chemotherapeutic agent for CRC. Furthermore, the underlying mechanisms of those effects in association with connexin 43 (Cx43)‑composed gap junction (GJ) function were analyzed. The Lovo, Colo320, HCT116 and HT29 human CRC cell lines, with or without Cx43 expression, were used to examine the effects of the three analgesics on the cytotoxicity of oxaliplatin. The results demonstrated that in the cell lines expressing Cx43 (Lovo and Colo320), the cytotoxicity of oxaliplatin was attenuated and Cx43 GJ function was inhibited. Sufentanil, not fentanyl or remifentanil, inhibited Cx43 GJ function effectively, and reduced the cytotoxicity of oxaliplatin. In contrast, these effects were not observed in the other two colon cancer cell lines not expressing Cx43 (HCT116 and HT29). These results suggested that alternation of Cx43 GJ function may regulate the cytotoxicity of oxaliplatin in regard to CRC. Furthermore, sufentanil, not fentanyl or remifentanil, suppressed the cytotoxicity of oxaliplatin through inhibition of Cx43 GJ function. These results may be beneficial for the treatment of CRC and reduction of treatment resistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Min Su
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
19
|
|
20
|
Yu X, He S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol J 2016; 13:77. [PMID: 27154074 PMCID: PMC4859980 DOI: 10.1186/s12985-016-0528-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/17/2016] [Indexed: 01/16/2023] Open
Abstract
Human herpes simplex virus (HSV) is a ubiquitous human pathogen that establishes a lifelong latent infection and is associated with mucocutaneous lesions. In multicellular organisms, cell death is a crucial host defense mechanism that eliminates pathogen-infected cells. Apoptosis is a well-defined form of programmed cell death executed by a group of cysteine proteases, called caspases. Studies have shown that HSV has evolved strategies to counteract caspase activation and apoptosis by encoding anti-apoptotic viral proteins such as gD, gJ, Us3, LAT, and the ribonucleotide reductase large subunit (R1). Recently, necroptosis has been identified as a regulated form of necrosis that can be invoked in the absence of caspase activity. Receptor-interacting kinase 3 (RIP3 or RIPK3) has emerged as a central signaling molecule in necroptosis; it is activated via interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIP1 (or RIPK1). There is increasing evidence that HSV R1 manipulates necroptosis via the RHIM-dependent inactivation or activation ofRIP3 in a species-specific manner. This review summarizes the current understanding of the interplay between HSV infection and cell death pathways, with an emphasis on apoptosis and necroptosis.
Collapse
Affiliation(s)
- Xiaoliang Yu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow UniversitY, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow UniversitY, Suzhou, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|